

Report on Salinity Investigation and Management Plan

Proposed Residential Subdivision 51 St Andrews Road, Leppington

Prepared for Cornish Group Pty Ltd

> Project 76571.02 July 2014

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details	
Project No.	76571.02 Document No. 1
Document title	Salinity Investigation and Management Plan
Site address	51 St Andrews Road, Leppington
Report prepared for	Cornish Group Pty Ltd
File name	P:\76571.02 LEPPINGTON, Salinity Inv & Management Plan, BAH\Report\
	76571.02 LEPPINGTON SMP 020714.doc

Document status and review

Revision	Prepared by	Reviewed by	Date issued
0	Bradley Harris	John Lean	2 July 2014

Distribution of copies

Revision	Electronic	Paper	Issued to
0	1	3	Cornish Group Pty Ltd, c/ SMEC Urban Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Author	2 July 2014
Reviewer Gr JL	2 July 2014

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 5, 50 Topham Road Smeaton Grange NSW 2567 Phone (02) 4647 0075 Fax (02) 4646 1886

Table of Contents

Page

1.	Intro	duction1	
2.	Scop	e of Works1	
3.	Site I	Description2	
4.	Geol	ogy and Hydrogeology3	
5.	Field Work Methods		
6.	Resu	ılts4	
	6.1	Aggressivity6	
	6.2	Salinity8	
	6.3	Sodicity and Dispersibility	
7.	Impa	ct of the Site Materials on the Proposed Development9	
	7.1	Aggressivity9	
	7.2	Salinity9	
	7.3	Sodicity9	
8.	Salin	ity Management Plan9	
9.	Addit	tional Considerations11	
10.	Refe	rences:	
11.	Limit	ations13	

Appendix A:	About this Report Drawings 1 – 4
Appendix B:	Test Pit Logs
Appendix C:	Summary Table: Laboratory Tests and Assessments
Appendix D:	NATA Reports and Chain of Custody sheets

Report on Salinity Investigation and Management Plan Proposed Residential Subdivision 51 St Andrews Road, Leppington

1. Introduction

This report presents the results of a salinity investigation and provides a salinity management plan for the proposed residential subdivision at 51 St Andrews Road, Leppington. The work was commissioned by Mr Paul Parfenow of SMEC Urban Pty Ltd on behalf of Cornish Group Pty Ltd.

Saline soils affect much of the Western Sydney Region. Buildings and infrastructure located on shales of the Wianamatta Group are particularly at risk. Salinity can affect urban structures in a number of ways including corrosion of concrete, break down of bricks and mortar, corrosion of steel (including reinforcement), break up of roads, attack on buried infrastructure, reduced ability to grow vegetation and increased erosion potential.

It is understood that a residential subdivision is proposed and that an assessment of soil salinity is required for submission to Camden Council with the subdivision application and to assist in conceptual planning of the development.

The investigation comprised excavation of test pits, followed by laboratory testing of selected samples, engineering analysis and reporting. Details of the work undertaken and the results obtained are given within this report, together with comments relating to design and construction practice.

This assessment was undertaken concurrently with a geotechnical investigation for the site (Project 76571.03) which is reported separately.

2. Scope of Works

The current report includes two parts:

- 1. Salinity assessment of the site based upon:
- Collection of samples at regular depth intervals from 39 test pits (14 deep test pits to 3 m (or prior refusal) and 25 shallow test pits to 0.5 m);
- Inspection of the site for signs of salinity;
- Analysis of electrical conductivity (EC1:5), pH and soil texture test results for 116 soil and weathered rock samples determined at a NATA accredited analytical laboratory, for classification of salinity and aggressivity;
- Laboratory analysis of additional salinity, aggressivity and erodibility indicators, including chloride and sulphate concentrations (56 samples), sodicities (26 samples) and dispersibility testing (five samples) at a NATA accredited analytical laboratory; and

- Geotechnics | Environment | Groundwater
- Assessment of the results with respect to potential for salinity impacts on the development.
- 2. Preparation of a Salinity Management Plan (SMP) for the site providing guidance on development strategies to reduce the impact of saline materials (if and where found). The Plan was based upon:
- Review of the salinity investigation results;
- Review of the following documents detailing Council requirements:
 - o 'Building in Salinity Prone Environments', Camden Council, 2004;
 - o 'Map of Salinity Potential in Western Sydney', DNR (2002);
 - o 'Guidelines to Accompany Map of Salinity Potential in Western Sydney', DNR (2002);
 - o 'Western Sydney Salinity Code of Practice' (amended January 2004), Rebecca Nicholson for WSROC, DNR and Natural Heritage Trust;
 - o 'Guide to Residential Slabs and Footings in a Saline Environment', Cement, Concrete and Aggregates, Australia (2005);
 - o 'Introduction to Urban Salinity', DNR (2003);
 - o 'Building in a Saline Environment' DNR (2003);
 - o 'Roads and Salinity', DNR (2003);
 - o 'Indicators of Urban Salinity', DNR (2002);
 - o 'Site Investigations for Urban Salinity', DNR (2002);
 - o 'Urban Salinity Processes', DNR (2004);
 - o 'Waterwise Parks and Gardens', DNR (2004); and
 - o 'Broad Scale Resources for Urban Salinity Assessment' DNR (2002).

3. Site Description

The site is located at 51 St Andrews Road, Leppington (Lot 72 in Deposited Plan 706546) and was previously used for the production of fireworks. The site has an irregular shape and covers an area of approximately 13 ha. The site location and boundaries are shown on Drawing 1, Appendix A.

At the time of undertaking this assessment the site was in the process of being decommissioned with all buildings vacated and no pyrotechnic production occurring. The northern portion of the site consisted of brick and corrugated iron buildings associated with the former production of pyrotechnics. Various shipping containers were located within the site, as well as other storage sheds. Access tracks (some asphalt and some dirt) were located within the site. The southern portion of the site was grass-covered in the west and tree covered in the south-east and a large shed formerly located along the southern boundary had been removed. Two dams were located within the site, one within the site.

Fill mounds consisting of reworked natural material were observed in the northern portion of the site and anecdotal evidence indicates that the material was sourced from the construction of St Andrews Road.

4. Geology and Hydrogeology

Reference to the Penrith 1:100 000 Geological Series Sheet indicates that the site is underlain by Bringelly Shale (mapping unit Rwb) of the Wianamatta Group of Triassic age. This formation typically comprises shale, carbonaceous claystone, laminite and some minor coaly bands which weather to form clays of high plasticity. The results of the investigation were consistent with the geological mapping, with siltstone encountered in the pits that intersected rock.

The Penrith 1:100,000 Soils Landscape Sheet indicates that the majority of the site is within the Blacktown soil landscape group (mapping unit bt), which is associated with residual soils with moderately reactive, highly plastic subsoil, low soil fertility and poor soil drainage.

Additional reference to the Map of Salinity Potential in Western Sydney, indicates that the site is located in an area of *"Moderate salinity potential"* where *"saline areas may occur which have not yet been identified or may occur if risk factors change adversely"*. The classification is based on the landform and geology and it is noted that due to the resolution at the scale of the mapping, it is not possible to delineate the zone boundaries with precision.

The McNally, G. 2005, Investigation of Urban Salinity – Case Studies from Western Sydney, Urban Salt 2005 Conference Paper, Parramatta (McNally 2005) describes some general features of the hydrogeology of Western Sydney which are relevant to this site. The shale terrain of much of Western Sydney is known for saline groundwater, resulting either from the release of connate salt in shales of marine origin or from the accumulation of windblown sea salt. Seasonal groundwater level changes of 1 - 2 m can occur in a shallow regolith aquifer or a deeper shale aquifer due to natural influences.

Groundwater investigations undertaken by DP in the Camden area and previous studies of areas underlain by the Wianamatta Group and Quaternary river alluvium indicate that:

- the shales have a very low intrinsic permeability, hence groundwater flow is likely to be dominated by fracture flow with resultant low yields (typically < 1 L/s) in bores; and
- the groundwater in the Wianamatta Group is typically brackish to saline with total dissolved solids (TDS) in the range 4000 – 5000 mg/L (but with cases of TDS up to 31750 mg/L being reported). The dominant ions are typically sodium and chloride and the water being generally unsuitable for livestock or irrigation.

5. Field Work Methods

The current field work for this salinity investigation comprised the excavation of 39 test pits (TP) with a JCB 4CX backhoe fitted with a 450 mm bucket. These included TP103 and TP105 to depths of up to 5 m or prior refusal, TP101, TP107, TP110, TP117, TP122, TP124, TP126, TP128, TP129, TP133, TP136 and TP138 to depths of up to 3 m or prior refusal (deep test pits) and TP102, TP104, TP106,

TP108, TP109, TP111 to TP116, TP118 to TP121, TP123, TP125, TP127, TP130 to TP132, TP134, TP135, TP137 and TP139 to depths of 0.5 m (shallow test pits). The pits were logged on site by a geo-environmental engineer, who collected representative disturbed samples to assist in strata identification and for laboratory testing. After carefully backfilling each test pit, the surface was reinstated to its previous level.

The test pit locations were nominated by DP and were pegged on site prior to the investigation by SMEC Urban Pty Ltd, project surveyors. The location of the test pits are indicated on Drawing 2 (Appendix A). The surface levels (to Australian Height Datum, AHD) and co-ordinates (to the MGA94 Zone 56 system) were also provided by SMEC Urban Pty Ltd. The surface levels and co-ordinates are given on the test pit logs (Appendix B) and in the Summary Table (Appendix C).

6. Results

A review of the pits excavated for both contamination and salinity indicated that the majority of the site was covered by topsoil to depths of between 0.2 - 0.4 m which was underlain by silty clay with ironstone gravels noted in some locations to depths of between 0.8 - 3.8 m or test pit termination. These soils were underlain in turn by shale bedrock.

Filling was encountered in seven test pits (TP101, TP113, TP118, TP124, TP125, TP128 and TP129) and comprised silt with traces of some clay and gravel and silty clay with traces of ironstone gravel. TP128 comprised silty clay with some gravel and trace anthropogenic materials consisting of hose section, tile fragments and wooden paling.

No free groundwater was observed in excavated test pits. It is noted that the test pits were immediately backfilled on completion which precluded long term monitoring of groundwater levels.

The test pit logs are provided in Appendix B, together with notes defining classification methods and descriptive terms.

No signs of efflorescence were noted during the inspection.

A Summary Table (Appendix C), presents the results of laboratory tests, assessments of aggressivity to concrete and steel, sodicity class, textural classification, calculated salinity ECe and salinity class inferred from ECe values using the method of Richards (1954). The Summary Table (Appendix C) also includes results of Emerson Crumb tests and derived Dispersion Potentials. The detailed laboratory test reports and chain of custody information are provided in Appendix D.

Drawing 3 (Appendix A) shows the areas of the site which are proposed to be cut and filled (based on the draft bulk earthworks plan supplied by SMEC Urban Pty Ltd (SMEC Urban Drawing No. 77831.00.DA501 Rev A – Cut and Fill Plan)). The Summary Table (Appendix C) presents approximate, interpolated cut and fill depths. The maximum proposed cut is up to 4 m in the vicinity of test pits TP103 and TP105 and the maximum proposed fill is up to 3 m in the vicinity of TP115 and TP116.

A "worst case" scenario was used to classify the extent of salinity and aggressivity within the site. This was achieved by utilising a maxima/minima analysis within three area types defined by the cut-fill diagram provided for this assessment.

For foundation depths of up to 1.0 m below the proposed surface:

- Cut areas relevant maximum or minimum values from the sample closest to the proposed surface level (after cutting) and from 0.5 m and 1.0 m below that sample (where available) were determined at individual locations and interpolated between locations to assess future foundation zone conditions in these sub-areas of the finished site; and
- Fill areas the most saline and most aggressive classifications of all the material to be excavated from above the proposed surface within the cut areas, were first used to classify the material to be used as filling. These classifications were then compared with those from shallow samples (up to 1.0 m bgl) at individual test locations within areas that are proposed to receive shallow fill (less than 1.0 m). The worst case results from the filling material as a whole and from the shallow samples at individual locations were used to classify the future foundation soils at the individual locations. These maxima or minima were interpolated between locations to assess future foundation zone conditions in these sub-areas into which filling materials are to be placed;

For deep foundations (i.e. piers):

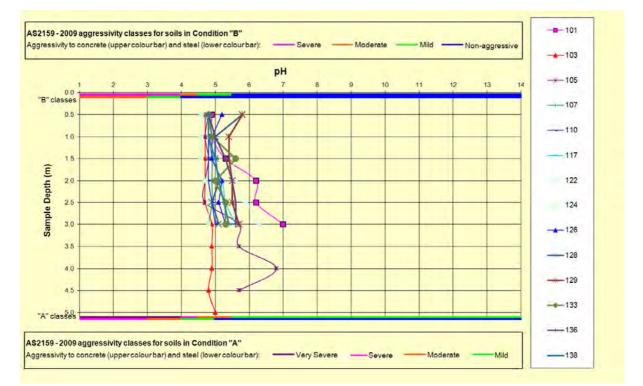
• Finished surface area – This comprised the entire site area, where minimum pH and resistivity values at individual locations (from all investigated depths below the proposed surface level), were interpolated across the site to assess soil aggressivity to future concrete and steel piles.

These maximum or minimum values were used for spatial mapping of salinities and aggressivities throughout the investigation area.

Table 1 (following page) summaries total test sample numbers and the range of test results obtained.

Parameter		Units	Samples	Minimum	Maximum
рН		pH units	116	4.4	7
Chlo	rides	(mg/kg)	56	78	1000
Sulp	hates	(mg/kg)	56	21	480
Aggregoisiti	to Concrete	[AS2159]		non-aggressive	moderate
Aggressivity	to Steel	[AS2159]		non-aggressive	mild
Exchangeable	e Sodium (Na)	(meq/100g)	26	1.3	4.8
CEC (cation exchange capacity)		(meq/100g)	26	4.9	18
Sodicity [Na/CEC]		(ESP%)	26	15.5	34.8
Sodicity Class		[after DLWC]	-	highly sodic	highly sodic
EC1:5 [Lab.]		(mS/cm)	116	84	890
Resistivity		Ω.cm	116	1123.6	11904
ECe [M x EC1:5] ¹		(dS/m)	-	0.7	8.6
Salinity Class		[after Richards 1954]	-	non-saline	very saline

Table 1: Summary of Test Results


1 M is soil textural factor

6.1 Aggressivity

Figure 1 (following page) presents variations of aggressivity with depth, based on pH profiles at deep test pit locations, together with the aggressivity class ranges indicated in Australian Standard AS2159 (2009). The absence of free groundwater from all test pits and the impermeability of the sampled clayrich soils indicate that soils at all test pits are in Condition "B" as defined by AS2159.

The pH profiles of Figure 1 indicate that the materials throughout the site, at all investigated depths, are non-aggressive to steel. The chloride concentration guidelines of AS2159 support this non-aggressive classification. However, based on resistivity criteria (Appendix C), samples were classified as non-aggressive to mildly aggressive to steel.

Figure 1: Vertical pH Profiles and Aggressivity Classes

The Summary Table also indicates that 83.6% of all samples were non-aggressive to concrete, 15.5% were mildly aggressive and 0.9% were moderately aggressive. The worst case analysis indicated that the majority of the site was underlain by soils with mild aggressivity to concrete foundations and concrete piles. However, one sample (TP108/0.5 m) is classified as moderately aggressive to concrete, with a pH result of 4.4. This result is on the threshold of being mildly aggressive to concrete (pH of 4.5 - 5). On this basis and based on the cut and fill that is proposed, the entire site has been classified as mildly aggressive to concrete.

Calculated soil resistivities indicated higher aggressivities to steel than were indicated by pH measurements. The worst case analysis indicated that the majority of the site was underlain by soils with mild aggressivity to steel piles and on this basis and based on the cut and fill that is proposed, the entire site has been classified as mildly aggressive to steel.

6.2 Salinity

Figure 2 (below) presents the variations of salinity with depth, based on salinity (ECe) profiles at deep test pit locations, together with the salinity classifications of Richards (1954).

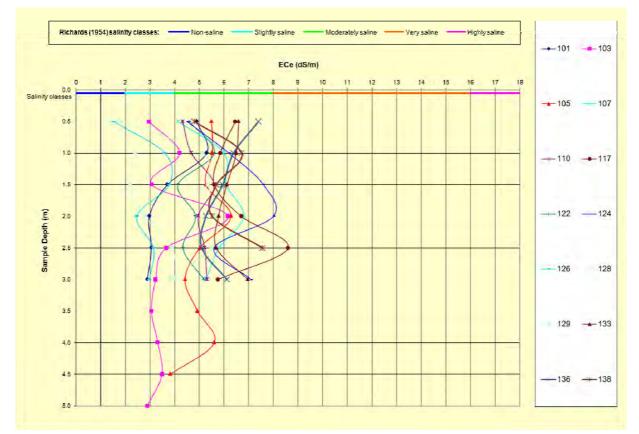


Figure 2: Vertical Salinity Profiles and Salinity Classes

The Summary Table (Appendix C) indicates that 7% of all soil samples were non-saline, 28% were slightly saline, 65% were moderately saline and 1% were very saline (1 sample).

As for soil aggressivity, the worst case analysis was used to define areas of moderately saline (ECe 4 - 8 dS/m) and very saline (ECe 8 - 16 dS/m) soil (see Drawing 4, Appendix A).

6.3 Sodicity and Dispersibility

The sodicity test reported in the Summary Table shows highly sodic soils, indicating some potential for erodability of soils left exposed.

Dispersion potential, tested at depths of 0.5 m - 2.0 m bgl by the Emerson Crumb Test (refer Summary Table, Appendix C), were determined to be class 5 and class 6 (no dispersion).

7. Impact of the Site Materials on the Proposed Development

The mild aggressivity to concrete and steel, the presence of moderately saline and very saline materials and the highly sodic soils are naturally occurring features of the local landscape and are not considered significant impediments to the proposed development, provided appropriate remediation or management techniques are employed.

7.1 Aggressivity

As indicated above in Section 6.1, the site materials have been classified as mildly aggressive to concrete, using the criteria within Australian Standard AS2159 (2009).

Concrete classifications under AS2159 allow for a 40 - 60 year lifetime, provided a minimum concrete strength of 32 MPa is applied in mildly aggressive conditions. Where concrete of lower than recommended strength is employed then a shorter lifetime may be expected, however no estimates are given in the Standard of this reduced lifetime.

In areas where materials are mildly aggressive to steel, corrosion allowance should be taken into account by the designer as discussed in the Salinity Management Plan (Section 8).

7.2 Salinity

Moderately saline and very saline conditions were found within the investigated depth zones, flagging the potential for salt-induced damage to susceptible services, slabs and shallow footings and demonstrating the need for appropriate salinity management.

7.3 Sodicity

Results (refer Summary Table, Appendix C) indicate that soils within depths of 0.5 – 4.0 m below the ground surface are highly sodic and it is considered that there is potential for sodic soils (either in situ, transported or imported as filling) to occur at the proposed ground surface. Sodic soils have low permeability due to infilling of interstices with fine clay particles during the weathering process, restricting infiltration of surface water and potentially creating perched water tables, seepage in cut faces or ponding of water in flat open areas. In addition, sodic soils tend to erode when exposed. Management of sodic soils is therefore required to prevent these adverse affects. As detailed in Section 8 below, management of sodic soils, following completion of bulk earthworks, is focussed on prevention of exposure.

8. Salinity Management Plan

The current salinity investigation indicates that materials within the site are moderately to very saline. Testing of other parameters associated with salinity indicates that the materials are mildly aggressive to steel (by the resistivity and chloride criteria of AS2159) and mildly aggressive to concrete within the site (by the pH and sulphate criteria of AS2159). In addition, shallow soils were highly sodic.

The following management strategies are confined to the management of those factors with a potential to impact on the development.

- A. Management should focus on capping of the upper surface of the sodic soils, both exposed by excavation and placed as filling, with a more permeable material to prevent ponding, to reduce capillary rise, to act as a drainage layer and to reduce the potential for erosion.
- B. When possible, place excavated materials in fill areas with similar salinity characteristics (ie: place material onto in-situ soils with a similar or higher aggressivity or salinity classification). With respect to imported fill material, testing should be undertaken prior to importation, to determine the salinity characteristics of the material, which should be non-aggressive and non-saline to slightly saline where possible but in any case not more aggressive or more saline than the material on which it is to be placed.
- C. Sodic soils can also be managed by maintaining vegetation where possible and planting new salt tolerant species. The addition of organic matter, gypsum and lime can also be considered where appropriate. After gypsum addition, reduction of sodicity levels may require some time for sufficient infiltration and leaching of sodium into the subsoils, however capping of exposed sodic material should remain the primary management method. Topsoil added at the completion of bulk earthworks is, in effect, also adding organic matter which may help infiltration and leaching of sodium.
- D. Avoid water collecting in low lying areas, in depressions, or behind fill. This can lead to water logging of the soils, evaporative concentration of salts, and eventual breakdown in soil structure resulting in accelerated erosion.
- E. Any pavements should be designed to be well drained of surface water. There should not be excessive concentrations of runoff or ponding that would lead to waterlogging of the pavement or additional recharge to the groundwater through any more permeable zones in the underlying filling material.
- F. Surface drains should generally be provided along the top of batter slopes to reduce the potential for concentrated flows of water down slopes possibly causing scour.
- G. Salt tolerant grasses and trees should be considered for landscaping, to reduce soil erosion as in Strategy A above and to maintain the existing evapo-transpiration and groundwater levels. Reference should be made to an experienced landscape planner or agronomist.

The following additional strategies are recommended for completion of service installation and for house construction. These strategies should be complementary to standard good building practices recommended within the Building Code of Australia, including cover to reinforcement within concrete and correct installation of a brick damp course, so that it cannot be bridged to allow moisture to move into brick work and up the wall.

H. As the entire site is classified as mildly aggressive to concrete piles, piles should have a minimum strength of 32 MPa and a minimum cover to reinforcement of 60 mm (as per AS2159) to limit the corrosive effects of the surrounding materials (in accordance with AS2159).

- I. With regard to concrete structures, for moderately saline soils that are mildly aggressive to concrete (refer Drawing 4, Appendix A), slabs and foundations should have a minimum strength of 25 MPa, a minimum cover to reinforcement of 45 mm from unprotected ground and should be allowed to cure for a minimum of three days (as per AS3600) to limit the corrosive effects of the surrounding soils.
- J. With regard to concrete structures, for very saline soils that are mildly aggressive to concrete (refer Drawing 4, Appendix A), slabs and foundations should have a minimum strength of 32 MPa, a minimum cover to reinforcement of 50 mm from unprotected ground and should be allowed to cure for a minimum of seven days (as per AS3600) to limit the corrosive effects of the surrounding soils.
- K. Any future installation of concrete pipes up to a maximum diameter of 750 mm, within the site, should employ fibre reinforced cement. Alternatively, concrete pipes in these areas should be encased in outer PVC conduits or should have a minimum equivalent strength as defined in I and J above.
- L. Concrete pipes with a larger diameter than 750 mm should utilise sulphate resistant cement.
- M. Resistivity results indicate soils that are mildly aggressive to steel. For soils that are mildly aggressive to steel, the following corrosion allowances (as per AS 2159 2009) should be taken into account by the designer:
 - \circ Mild: uniform corrosion allowance 0.01 0.02 mm/year; and

In instances where a coating is applied to the pile, if the design life of the pile is greater than the design life for the coating, consideration must be given to corrosion of the pile in accordance with the above list.

9. Additional Considerations

This SMP is based on the bulk earthworks plan supplied by SMEC Urban Pty Ltd (SMEC Urban Drawing No. 77831.00.DA501 Rev A – Cut and Fill Plan). Subsequent revisions to this plan must be reviewed by DP to assess the applicability of the SMP to the revised design. Such a review must be in writing and must be attached to copies of this report. Substantial changes to the proposed cut and fill on the site are likely to require additional testing or alterations of the drawings.

10. References:

- Chhabra, R. 1966, *Soil Salinity and Water Quality*, A. Bakema/Rotterdam/Brookfield, New York, 284 pp.
- Department of Mines 1985, Geology of Wollongong Port Hacking 1:100 000 Geological Series Sheet No 9029 – 9129.
- Camden Council 2004, Building in Salinity Prone Environments.
- Cement, Concrete and Aggregates, Australia 2005, *Guide to Residential Slabs and Footings in a Saline Environment, Introduction to Urban Salinity.*
- Department of Infrastructure, Planning and Natural Resources, New South Wales (DIPNR) 2003, Salinity Potential in Western Sydney 1:100 000 Sheet (now managed by the Department of Primary Industries – DPI).
- Department of Natural Resources (DNR) 2002, *Broad Scale Resources for Urban Salinity* Assessment Sydney (now managed by DPI).
- DNR 2002, *Guidelines to Accompany Map of Salinity Potential in Western Sydney* (now managed by DPI).
- DNR 2002, Indicators of Urban Salinity (now managed by DPI).
- DNR 2002, Map of Salinity Potential in Western Sydney (now managed by DPI).
- DNR 2002, Site Investigations for Urban Salinity (now managed by DPI).
- DNR 2003, Building in a Saline Environment (now managed by DPI).
- DNR 2003, Roads and Salinity (now managed by DPI).
- DNR 2004, Urban Salinity Processes (now managed by DPI).
- DNR 2004, Waterwise Parks and Gardens (now managed by DPI).
- Hazelton, P. A. and Murphy B. W. 2007, *Interpreting Soil Test Results* Department of Natural Resources.
- McNally, G. 2005, Investigation of Urban Salinity Case Studies from Western Sydney, Urban Salt 2005 Conference Paper, Parramatta.
- Richards, L. A. (ed.) 1954, *Diagnosis and Improvement of Saline and Alkaline Soils* USDA Handbook No. 60, Washington D.C.
- Soil Conservation Service of New South Wales 1990, Soil Landscapes of Wollongong and Port Hacking 1:100 000 Sheet.
- Spies, B. and Woodgate, P. 2004, *Technical Report Salinity Mapping Methods in the Australian Context*, Natural Resource Management Ministerial Council.
- Standards Australia 1995, AS 2159 2009 Piling Design and Installation.
- Standards Australia 1996, AS 2870 1996 Residential Slabs and Footings.

11. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at 51 St Andrews Road, Leppington. This report is provided for the exclusive use of Cornish Group Pty Ltd for this project only and for the purpose(s) as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the subsurface conditions on the site only at the specific sampling locations, and then only to the depths investigated and at the time the work was carried out. Subsurface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be limited by undetected variations in ground conditions across the site between and beyond the sampling locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as a part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About this Report Drawings 1 – 4

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

Core Drilling
Rotary drilling
Spiral flight augers
Diamond core - 52 mm dia
Diamond core - 47 mm dia
Diamond core - 63 mm dia
Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

-

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
CO	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

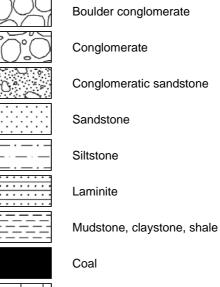
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

...

July 2010

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Par

2

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

s Parti

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

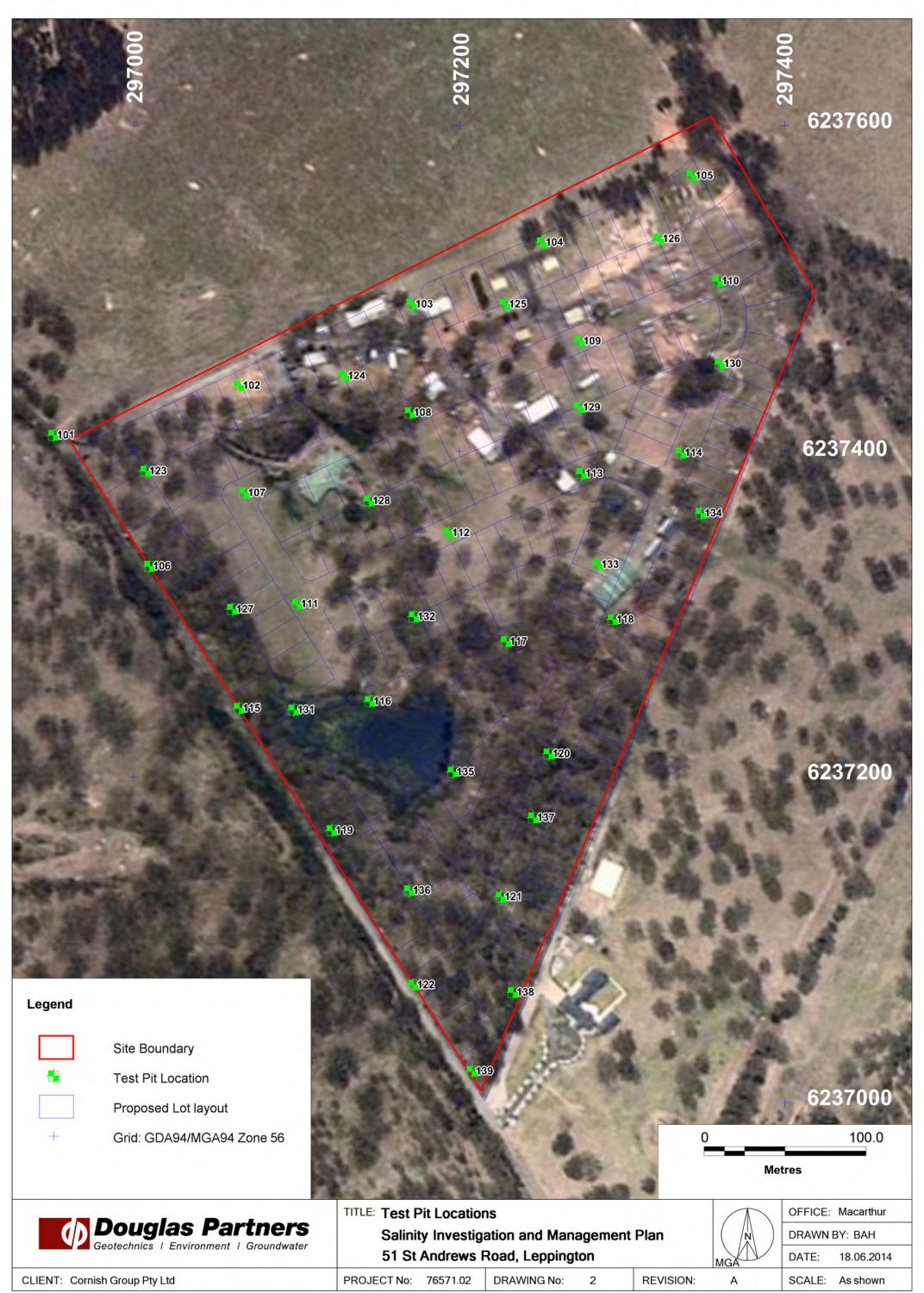
D

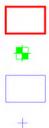
ers

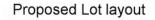
Rock Descriptions

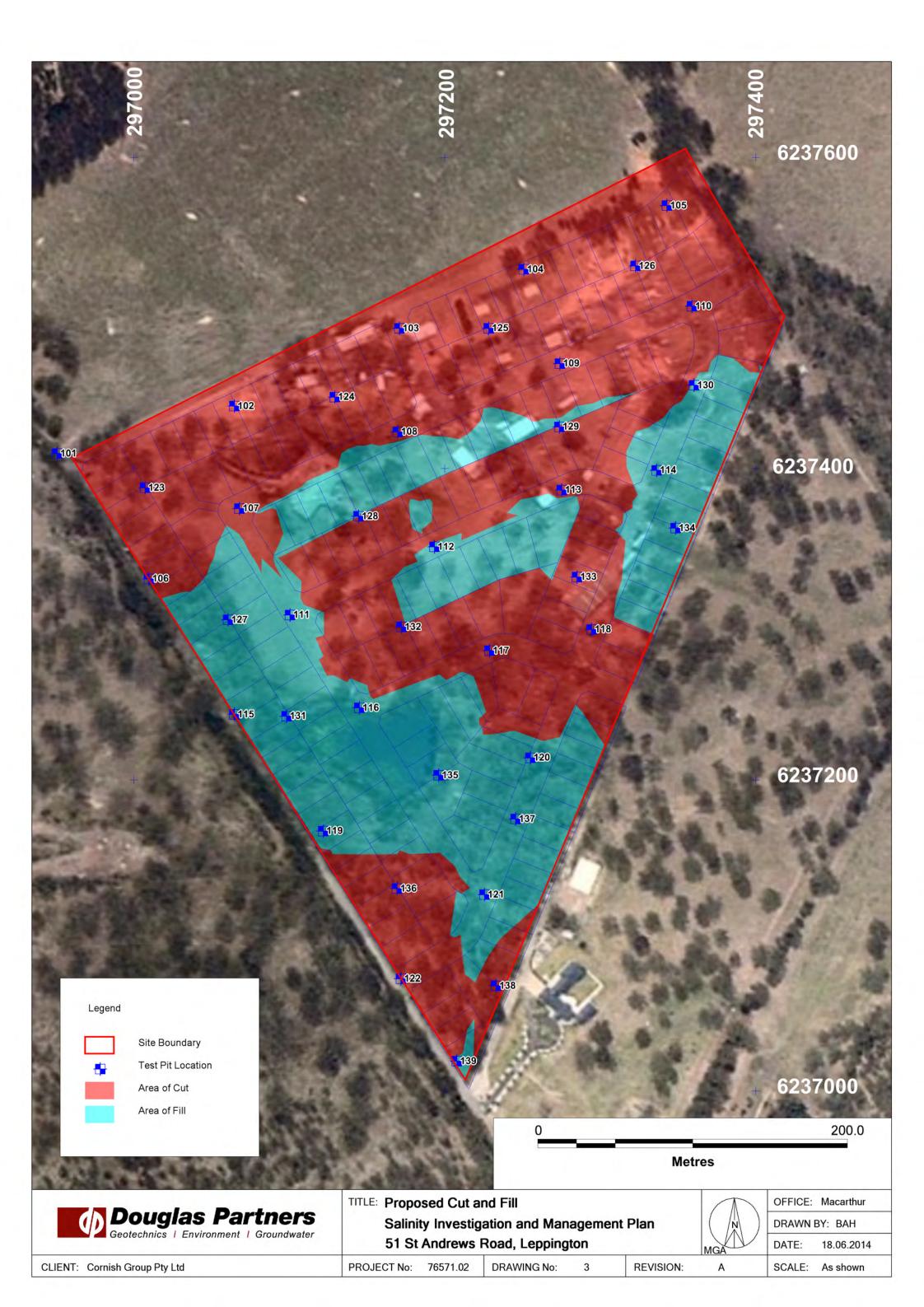
Rock Quality Designation

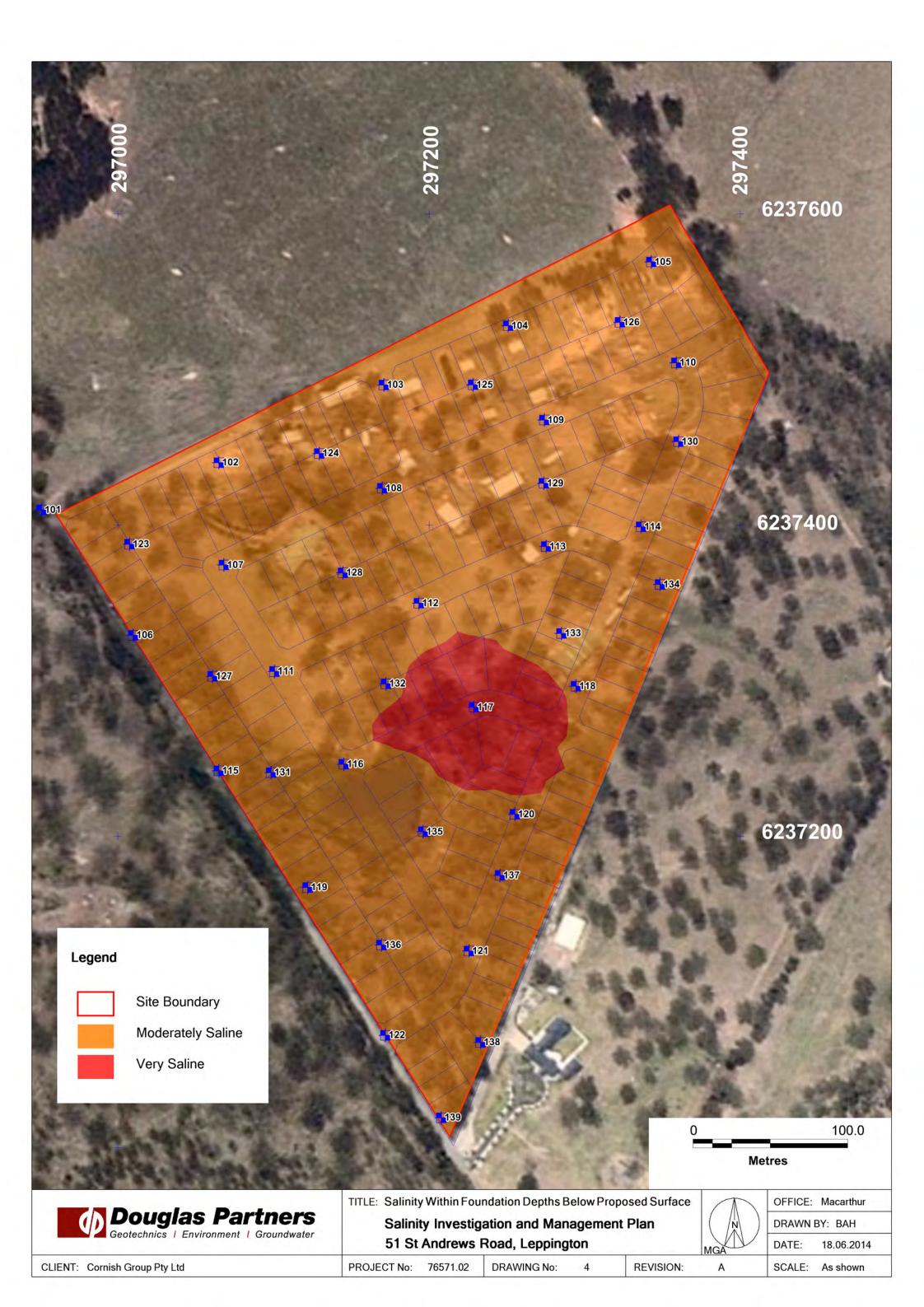
The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:


where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.


Stratification Spacing


For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:


Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	



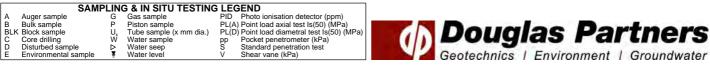
Appendix B

Test Pit Logs

CLIENT: Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington SURFACE LEVEL: 113.3 mAHD PIT No: 101 EASTING: 296951 **NORTHING:** 6237411

PROJECT No: 76571.02 DATE: 28/5/2014 SHEET 1 OF 1

	_		Description	IJ		Sam		& In Situ Testing	-	Dunamia Danatromatar Taat
RL	De (n	epth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
113	-		FILLING - brown and grey silt with trace clay and (sandstone and shale) gravel		D	0.5	Š			
12	- - - 1 -	0.8-	SILTY CLAY - hard, red mottled brown silty clay with trace (ironstone) gravel and rootlets, mc <pl< td=""><td></td><td>D/B</td><td>1.0</td><td></td><td></td><td></td><td>-1</td></pl<>		D/B	1.0				-1
	- - -	1.0	- becoming red and grey with shale banding below 1.5m		D	1.5				
	- - 2 -	1.8-	SHALE - low strength, grey and brown shale with some silty clay banding		D	2.0				-2
	- - - -		- becoming low to medium strength below 2.5m		D	2.5				
	-3	3.2-	Pit discontinued at 3.2m		D	3.0				-3
			- limit of investigation							
60	- 4 - 4									-4
108	- 5 - 5 -									-5
107	- 6 - -									-6
106	- 7 - -									-7


RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Test pit moved due to earthworks site boundary

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

Geotechnics | Environment | Groundwater

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 114.9 mAHD
 PIT No: 102

 EASTING:
 297065
 PROJECT No

 NORTHING:
 6237441
 DATE: 28/5/

PIT No: 102
 PROJECT No: 76571.02
 DATE: 28/5/2014
 SHEET 1 OF 1

			Description	. <u>c</u>		Sam		& In Situ Testing				
Ч	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
			Strata	G	Ţ	De	San	Comments	-	5 1	0 1 <u>5</u>	20
		0.3-	TOPSOIL - brown and grey silty clay with some (ironstone) gravel (possible filling)							-		
	•		SILTY CLAY - hard, orange and red mottled brown silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td>-</td><td>2</td><td></td></pl<>		D	0.5				-	2	
114	- 1	0.8-	SHALE - low strength, grey and orange shale with trace silty clay banding		D	1.0				- 1 -		
	•		- becoming low to medium strength below 1.5m		D	1.5						
113	-2	1.8-	SHALE - very low to low strength, extremely weathered, grey and orange shale with silty clay banding		D	2.0				-2		
					D/B	2.5						
112	-3		- becoming low to medium strength below 3.0m		D	3.0				-3		
		3.6			D	3.5						
	- 4		Pit discontinued at 3.6m - limit of investigation							-4		
110	-5											
	- 6									-6		
	-7									-7		
107												

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LIN	G & IN SITU TESTING	G LEG	SEND	
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)	
BLK	Block sample	Ux	Tube sample (x mm dia.)		Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
		-				-

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 115.0 mAHD PIT No: 103 EASTING: 297171 PROJECT No NORTHING: 6237491 DATE: 28/5/

PIT No: 103 PROJECT No: 76571.02 DATE: 28/5/2014 SHEET 1 OF 1

			Description	.e	Sampling & In Situ Testing					Dumamia Danatromator Taat		
RL	De (1	epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
2			Strata		Ê	Ď	Sar	Comments		5 10 15 20		
F	ŀ		TOPSOIL - brown silt with some clay and rootlets	R								
-	- - -	0.4	SILTY CLAY - very stiff to hard, red mottled grey silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td>$\left \frac{p_{\lambda}}{r} \right$</td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>	$\left \frac{p_{\lambda}}{r} \right $	D	0.5						
114	- 1				D	1.0						
-	-		- becoming grey mottled red and orange below 1.0m									
-	- - -				D	1.5						
113	-2	2.3	 with some extremely low to very low strength red shale banding below 2.0m 		D	2.0				-2		
-	-	2.0	SHALE - extremely low to very low strength, extremely weathered, red and grey shale with silty clay banding		D	2.5						
112	-3		- becoming very low to low strength below 3.0m		D	3.0				-3		
-	-				D/B	3.5						
11	- 4				D	4.0				-4		
-			 becoming light brown with trace silty clay banding below 4.0m 									
-	- - -				D	4.5						
110	-5	5.2			D	5.0				-5		
-	-		Pit discontinued at 5.2m - limit of investigation									
109	-6									-6		
-	-											
-	-											
108	-7									-7		
-	-											
-												

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMF	PLIN	G & IN SITU TESTING	G LEG	END	1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	L
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	L
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	L
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	L
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	L
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	L

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 113.9 mAHD PIT No: 104 EASTING: 297251 PROJECT N NORTHING: 6237529 DATE: 28/5/

PIT No: 104
 PROJECT No: 76571.02
 DATE: 28/5/2014
 SHEET 1 OF 1

$\left[\right]$	_		Description	.ci		Sam		& In Situ Testing			· -			
묍	De (n	epth n)	of	Graphic Log	a +t a Results & b - - - Comments c - - - -				Water	Dynamic Penetrometer Test (blows per 150mm)				
$\left \right $			Strata TOPSOIL - brown and grey silt with some clay		-	Ō	Sa		-		5 10	15	20	
										-	Ĺ			
		0.4	SILTY CLAY - very stiff, red and orange silty clay with		D	0.5				-	L J			
			trace (ironstone) gravel, mc <pl< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>٦</td><td></td><td></td></pl<>	1							٦			
113	- 1		- becoming hard light brown and orange mottled grey		D	1.0				- -1			:	
		1.3	- becoming hard, light brown and orange mottled grey with some very low strength shale bands below 1.0m							-				
			SHALE - very low to low strength, grey and brown shale with some silty clay banding		D	1.5				-				
			^L - becoming low to medium strength below 1.5m							[
112	-2	0.4			D/B	2.0				-2				
		2.1	Pit discontinued at 2.1m - refusal in low to medium strength shale							-				
										-				
-=	-3									-3				
										-				
										-				
110	- 4									-4				
										-				
										-				
										-				
-109	-5									-5				
										-			:	
108										-				
- - -	- 6									-6				
										ļ		-		
										-				
107										ļ		-		
	-7									-7				
										[
										-				
106										[
· `-								1	1	1	: :	:		

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

			3 & IN SITU TESTING	LEG	END
A A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B E	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK E	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
	Core drilling		Water sample		Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
E E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 108.7 mAHD PIT No: 105 EASTING: 297343 PROJECT No NORTHING: 6237570 DATE: 28/5/

PIT No: 105 PROJECT No: 76571.02 DATE: 28/5/2014 SHEET 1 OF 1

	_		Description	jc _		Sam		& In Situ Testing	ŗ	Dunamia Danatramatar Taat
RL	De (n	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata TOPSOIL - brown and grey silt and clay with rootlets		-	Ō	Sa	Commenta	_	5 10 15 20
	-			K						
-	-	0.4	SILTY CLAY - very stiff, orange and red mottled brown silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td>; \ </td></pl<>		D	0.5				; \
108	-		silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
	- 1				D	1.0				-1
-	-		- becoming hard, grey with shale banding below 1.0m							
-	-				D	1.5				
107	-									
	-2	1.8-	SHALE - extremely low to very low strength, red and grey shale and with some silty clay banding		D	2.0				-2
-	-		g ,		2	2.0				
	-				D	2.5				
106	-				D	2.0				
-	- - 3				D	3.0				-3
-	-		 becoming low to medium strength, light brown below 3.0m 							
-	-				D/B	3.3				
105	-		- reduced silty clay banding below 3.5m		D	3.5				
	-				_					
	-4				D	4.0				
-	-									
104	-	4.6	Pit discontinued at 4.6m	<u> </u>	D	4.5				
-	-		- refusal in low to medium strength shale							
	-5									-5
-	-									
	-									
10:	-									
-	-6									-6
	-									
~	-									
10	-									
	-7									-7
ŀ	-									
ŀ	-									
101	-									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LIN	G & IN SITU TESTING	LEG	SEND	1
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 113.4 mAHD PIT No: 106 EASTING: 297010 PROJECT No NORTHING: 6237330 DATE: 28/5/

PIT No: 106 PROJECT No: 76571.02 DATE: 28/5/2014 SHEET 1 OF 1

	Depth	Description	hic				& In Situ Testing	- L	Dynamic Penetrometer Test
R	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
$\left \right $		TOPSOIL - brown silt with some clay and rootlets	XX		<u> </u>	ũ			5 10 15 20
<u></u>	0.4		888	D/B	0.4				
	0	SILTY CLAY - hard, red mottled grey silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td>1/</td><td>D/B D—</td><td>-0.5</td><td></td><td></td><td></td><td></td></pl<>	1/	D/B D—	-0.5				
ĒĒ									
	- 1	- becoming grey below 1.0m	1	D	1.0				-1
_₽	1.3	SHALE - very low to low strength, grey shale with trace silty clay banding	<u>///</u> 						
	1.6	silty clay banding Pit discontinued at 1.6m		D	1.5			-	
		- limit of investigation							
	-2								-2
Ē									
} 									
	- 3								-3
19									
	- 4								-4
	4								
6									
} }									-
	- 5								-5
ŀŀ									
[⁸									
ŧŧ									
	- 6								-6
101									
	-7								-7
106									
ŀ									
Ŀ									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LIN	3 & IN SITU TESTING	LEG	SEND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	i I
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	i I
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	i I
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	1

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 111.6 mAHD
 PIT No: 107

 EASTING:
 297068
 PROJECT No: 007

 NORTHING:
 6237375
 DATE: 26/5/

PIT No: 107 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

	_	Description	j		Sam		& In Situ Testing	-	DurinDuri	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		150mm)
-	-	TOPSOIL - brown and orange silt with some clay and		-		ഗ്		\vdash	5 10	15 20
-	- - - 0.4	rootlets	XX XX							
111	-	SILTY CLAY - stiff to very stiff, orange and red mottled brown silty clay with some fine grained (ironstone) gravel, mc~pl		D	0.5				[G	
-	-	gravel, mc~pi							[]	
	1 - -			D/B	1.0				-1	
	-			D	1.5					
110	-	- becoming very stiff to hard, grey below 1.5m			1.0					
	-2	with some year law strength shale bands below 2.0m	1/	D	2.0				-2	
-	-	- with some very low strength shale bands below 2.0m								
109	-		1	D	2.5					
	- 2.8	SHALE - extremely low strength, extremely weathered.								
-	-3	SHALE - extremely low strength, extremely weathered, grey and orange shale with grey silty clay banding		D	3.0				-3	
-	- 3.2 -	Pit discontinued at 3.2m - limit of investigation								
108	-									
	- - - 4								-4	
	-									
2	-									
-10	-									
	- -5 -								-5	
-	-									
106	-									
-	-									
	-6								-6	
	-									
105	-									
-	- - -7								-7	
-	• • •									
	-									
-10	-									
Ŀ										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

S/	AMPLIN	G & IN SITU TESTING	G LEG	END	1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample		Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	ole 📱	Water level	V	Shear vane (kPa)	

Cornish Group Pty Ltd CLIENT: PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 111.8 mAHD PIT No: 108 NORTHING: 6237424

EASTING: 297170 **PROJECT No:** 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

	_		Description	.e		Sam		& In Situ Testing	-		
씸	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)	•
\square	_		Strata		Γ.	ă	Sa	Comments		5 10 15 20	
ļ			TOPSOIL - dark brown silt and clay								
		0.3-	SILTY CLAY - very stiff to hard, red mottled grey silty clay with trace (ironstone) gravel and roots, mc <pl< td=""><td>1</td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td></pl<>	1	D	0.5					
	- 1 - 1		- with some shale bands below 1.0m		D/B	1.0					
110		1.5-	SHALE - low strength, grey and orange shale with some silty clay banding		D	1.5					
F F	-2		- becoming low to medium strength below 2.0m		D	2.0				-2	
		2.2-	Pit discontinued at 2.2m - limit of investigation	I							
109											
	-3										
108											
	- - -										
107	-5									5	
106	- 6									- 6	
105	- 7									-7	
[]											
-10 -10											

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMF	LIN	G & IN SITU TESTING	LEG	SEND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	Í Í
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	1
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	1
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 108.6 mAHD
 PIT No: 109

 EASTING:
 297274
 PROJECT No

 NORTHING:
 6237468
 DATE: 27/5/2

PIT No: 109
 PROJECT No: 76571.02
 DATE: 27/5/2014
 SHEET 1 OF 1

		Description	Ŀ		Sam		& In Situ Testing	_	
묍	Depth (m)	OI OI	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	0	L F	Ď	Sar	Comments	-	5 10 15 20
ŀ	-	TOPSOIL - dark brown silt with some clay, rootlets and trace (ironstone) gravel	Ŵ						
ŀ	- 0.3	SILTY CLAY - stiff, orange and red silty clay, mc~pl							
108	-	- becoming mottled grey below 0.5m	1/	D	0.5				
ŀ	-		1/1	1					
F	- - 1		1	D	1.0				1 1
F	-								
[_			D	1.5				
107	-		//		1.0				
ŀ	-		1/1	1					-
ŀ	-2		1	D	2.0				-2
ŀ	-			D/B	2.2				
- 0	-	- with some extremely low strength, red shale hands		D	2.5				
106	-	 with some extremely low strength, red shale bands below 2.5m 	1/						
ł	- 3		1/	D	3.0				-3
ł	-								
ŀ	-								
105	-								
ŀ	- 3.8	SHALE - low to medium strength, red and grey shale							
F	-4 4.0	with trace silty clay banding							4
Ē	-	Pit discontinued at 4.0m - limit of investigation							
ł	-								-
104	-								
ŀ	-								
F	-5								-5
Ē	_								
103	-								
[-								
ŀ	- -6								- 6
F	-								
F	-								
102									
ł	-								
ŀ	-7								-7
ŀ	-								
 	-								
101	-								
F	-								

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPI	LIN	3 & IN SITU TESTING	S LEG	SEND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT:

Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 106.1 mAHD PIT No: 110 EASTING: 297359 NORTHING: 6237505

PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

	D -		Description	jc r		Sam		& In Situ Testing		Dunamia Panatromator Toot
RL	De (n	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
6			Strata TOPSOIL - brown silt with some clay		-	Ō	Sa	Comments		5 10 15 20
106	-		TOPSOIL - brown siit with some day							
E		0.4	SILTY CLAY - stiff, grey and orange silty clay, mc~pl		D	0.5				[[
ł	-				D	0.0				
ł	-									ζ
192	-1 -				D	1.0				-1
F	-									
F	-		- with some very low strength shale bands below 1.5m		D	1.5				
E			with some very low strength shale surds selow 1.5m							
ł	-2				D	2.0				-2
-12	-				D/Bx2					
ł	-									
ŧ	-				D	2.5				
Ē										
103	-3			1/1	D	3.0				-3
f		3.2	SHALE - very low strength, highly weathered, grey and red shale and grey silty clay banding							
ł	-		red shale and grey silty clay banding		D	3.5				
ł	-	3.6	Pit discontinued at 3.6m							
F			- limit of investigation							
10	-4									-4
E	-									
ł	-									
ł	-									
ţ	-5									-5
-6	-									
F	-									
Ē										
ŀ										
100	-6									-6
ļ	-									
ţ	-									
ŧ	-									
F	-									-7
-66	ľ									[
É										
ł	-									
ŀ	-									
Ŀ	-									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

Cornish Group Pty Ltd CLIENT:

PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 108.0 mAHD PIT No: 111 EASTING: 297101 NORTHING: 6237307

PROJECT No: 76571.02 **DATE:** 26/5/2014 SHEET 1 OF 1

\square	_		Description	.c		Sam		& In Situ Testing	-	Dynamic Penetrometer Test		
Я	De (m	pth ר)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
108			Strata		ŕ	De	Sar	Comments		5 10 15 20		
		0.3	TOPSOIL - dark brown silt and clay with rootlets and trace (ironstone) gravel			03				Ę		
			SILTY CLAY - stiff to very stiff, orange mottled grey silty clay, mc~pl - becoming grey below 0.5m		B D	0.3 0.4 0.5						
107	- 1				D	1.0				-1		
		1.2-	Pit discontinued at 1.2m - limit of investigation									
106	-2									-2		
105	-3									-3		
104	- 4 -									-4		
103	- 5									-5		
102	-6									-6		
101										-		
	,											

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 108.4 mAHD PIT No: 112 EASTING: 297194 PROJECT No NORTHING: 6237351 DATE: 27/5/

PROJECT No: 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing		Dynamic Penetrometer Test			
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water				
		TOPSOIL - dark brown silt and clay with some gravel and rootlets	ß			S				15 20		
	0.4	SILTY CLAY - very stiff, orange and red mottled grey silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td></td><td>D/B D—</td><td>0.4 -0.5</td><td></td><td></td><td></td><td></td><td>٦</td></pl<>		D/B D—	0.4 -0.5					٦		
	- 1	- becoming hard, grey mottled red below 0.8m		D	1.0				-1			
107	1.3	SHALE - extremely low to very low strength, extremely weathered, grey and red shale with grey silty clay banding		D	1.5							
	-2	Pit discontinued at 1.8m - limit of investigation							-2			
106												
	-3								-3			
105												
	-4								4			
104												
	-5								-5			
103												
	-6								- 6			
102									-			
	- 7								-7-7			
101												

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	11					
BLK Block sample	U,	Tube sample (x mm dia.)) PL(D)	Point load diametral test Is(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp .	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sa	mple 📱	Water level	V	Shear vane (kPa)						

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 105.7 mAHD
 PIT No: 113

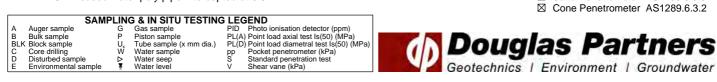
 EASTING:
 297275
 PROJECT No

 NORTHING:
 6237387
 DATE: 27/5/2

PIT No: 113 PROJECT No: 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

	_		Description	.e		Sam		& In Situ Testing		
RL	Dep (m	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	_		Strata		ŕ	Ğ	Sar	Comments	_	5 10 15 20
-	-	0.2	FILLING - black bitumen (road surface)							; ⊢ ,
-	-		FILLING - brown silty clay with some (shale and bitumen) gravel and trace sand							
- 2	-	0.6	SILTY CLAY, you stiff red mottled grou situ clay with	\mathbb{N}	D	0.5				
105	-		SILTY CLAY - very stiff, red mottled grey silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
E	-1				D/B	1.0				
-	-			1/						
-	-			1/	D	1.5				
104	-		- with some red shale banding below 1.5m	KI/						
-	-									
	-2	2.2		1/	D	2.0				-2
-	-	2.2	Pit discontinued at 2.2m - limit of investigation							
-	-									
100	-									
-	-3									-3
Ē	-									
-	-									
102	-									
-	-									
ŀ	-4									-4
Ē	-									
-	-									
101	-									
-	- 5									-5
-	-									
Ē	-									
100	-									
-	-									
-	-6									-6
-	-									
Ē										
- 66	-									
ŀ	-7									-7
ŀ	-									
ŀ	-									
Ē	-									
- 86										[
	-									

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

□ Sand Penetrometer AS1289.6.3.3

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Disused water poly pipe intercepted at 0.5m

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL:
 104.1 mAHD
 PIT No:
 114

 EASTING:
 297336
 PROJECT No

 NORTHING:
 6237400
 DATE:
 26/5/2

PIT No: 114 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

Π		Description	. <u>u</u>		Sam	pling 8	& In Situ Testing		
님	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	()	Strata	Ū	Тy	Der	San	Results & Comments		5 10 15 20
104	0.4	TOPSOIL - dark brown and orange silty clay with trace (ironstone) gravel SILTY CLAY - very stiff to hard, grey and brown mottled orange silty clay, mc <pl< td=""><td></td><td>D/B</td><td>0.4 _0.5</td><td></td><td></td><td></td><td></td></pl<>		D/B	0.4 _0.5				
103	-1	notiled orange sity day, notpi		D	1.0				
	1.2	Pit discontinued at 1.2m - limit of investigation							
102	-2								-2
	-3								-3
101									
100	- 4								-4
	-5								-5
	-6								
	-7								-7

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	ž	Water level	V	Shear vane (kPa)					

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL:
 106.5 mAHD
 PIT No:
 115

 EASTING:
 297065
 PROJECT No

 NORTHING:
 6237243
 DATE:
 28/5/

PIT No: 115
 PROJECT No: 76571.02
 DATE: 28/5/2014
 SHEET 1 OF 1

		Description	Dic		Sam		& In Situ Testing	-	Durantia Decetarantea Test
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	0.	TOPSOIL - brown silt with some clay	<u>}</u>			S			
106		SILTY CLAY - hard, red mottled brown silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td>1</td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>	1	D	0.5				
	-1 1.:	- becoming orange and grey with some (shale) gravel below 0.8m Pit discontinued at 1.2m		D	1.0				
105		- limit of investigation							
	-2								-2
104									
	-3								-3
103									
	- 4								-4
102									
	-5								-5
	- 6								6
100									
	- 7								-7

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND											
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)							
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)							
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D Disturbed sample	⊳	Water seep	S	Standard penetration test	Ľ						
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 104.9 mAHD
 PIT No: 116

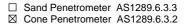
 EASTING:
 297145
 PROJECT No

 NORTHING:
 6237247
 DATE: 27/5/2

PIT No: 116
 PROJECT No: 76571.02
 DATE: 27/5/2014
 SHEET 1 OF 1

			Description	U		Sam	pling 8	& In Situ Testing		
R	De (n	pth า)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	0.4	TOPSOIL - brown silt with some clay, roots and trace fine grained (ironstone) gravel							
104	- - - - -1		SILTY CLAY - hard, red mottled brown silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5 1.0</td><td></td><td></td><td></td><td></td></pl<>		D	0.5 1.0				
-	-	1.2	Pit discontinued at 1.2m - limit of investigation							
103	-2-2									-2
102	-3									-3
101	- 4									-4
100	5									-5
66										-6
	- 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7									-7
	-									

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
	Disturbed sample	⊳	Water seep	S	Standard penetration test					
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)					

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 105.9 mAHD PIT No: 117 EASTING: 297229 PROJECT N NORTHING: 6237284 DATE: 27/5/

PIT No: 117
 PROJECT No: 76571.02
 DATE: 27/5/2014
 SHEET 1 OF 1

	_		Description	ic		Sam		& In Situ Testing	-	Dunamia Danata mata Taat
RL	De (r	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	
			Strata TOPSOIL - brown silt with some clay, roots and trace fine grained (ironstone) gravel	77	-		Š			5 10 15 20
-	-	0.3								
	-		SILTY CLAY - hard, red mottled grey and brown silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
-	-									
10	-1		- becoming very stiff, grey and orange below 1.0m	1	D	1.0				-1
-	-		- with some extremely low strength, red shale banding below 1.0m							
	-			1	D	1.5				
+	-									
104	-2				D/B	2.0				-2
-	-	2.3								
	-		SILTY CLAY - very stiff to hard, grey mottled red silty clay, mc <pl< td=""><td></td><td>D</td><td>2.5</td><td></td><td></td><td></td><td></td></pl<>		D	2.5				
-	-									
103	-3				D	3.0				-3
-	-	3.2	Pit discontinued at 3.2m							
-	-		- limit of investigation							
5	-									
10	-4									-4
-	-									
-	-									
-	-									
10	-5									-5
-	-									
	-									
-	-									
100	-6									-6
-	-									
	-									
-	-									
-66	-7									7
	-									
	-									
	-									
-98	-									<u>E</u>

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	11				
BLK Block sample	U,	Tube sample (x mm dia.)) PL(D)	Point load diametral test Is(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp .	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					
E Environmental sa	mple 📱	Water level	V	Shear vane (kPa)					

Cornish Group Pty Ltd CLIENT: PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 103.7 mAHD PIT No: 118 **EASTING:** 297295 **NORTHING:** 6237297

PROJECT No: 76571.02 **DATE:** 26/5/2014 SHEET 1 OF 1

\square		Description	ic		Sam		& In Situ Testing	-	D D	
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		etrometer Test er 150mm)
		FILLING - brown and orange silty clay with some (ironstone) gravel (reworked natural)				Se			5 10	15 20
103	0.5-	SILTY CLAY - very stiff, red mottled grey silty clay with some (ironstone) gravel, mc <pl< td=""><td></td><td>D D/B D</td><td>0.5 0.8 1.0</td><td></td><td></td><td></td><td></td><td></td></pl<>		D D/B D	0.5 0.8 1.0					
				D	1.5					
102	-2	 with some very low strength, extremely weathered shale bands below 1.5m 		D	2.0				-2	
	2.2-	Pit discontinued at 2.2m - limit of investigation							-	
101	-3								-3	
100										
	- 4								-4	
- · · · 66										
	-5								-5	
 - 86 										
	-6								-6	
. 26	-7								-7	
- 96										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Test pit on boundary of shed pad

	SAM	PLIN	G & IN SITU TESTING	LEC	GEND			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			A
BLŁ	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test (\$(50) (MPa)		126	Partners
С	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)	JUUU	103	railicij
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	eotechnics	I Enviro	nment Groundwater
					,			

CLIENT:

Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 108.0 mAHD PIT No: 119 EASTING: 297122 **NORTHING:** 6237168

PROJECT No: 76571.02 **DATE:** 28/5/2014 SHEET 1 OF 1

	_		Description			Sam		& In Situ Testing	L.	Dynamic Penetrometer Test	
R	De (n	epth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)	
			TOPSOIL - dark brown silt with some clay	M			ő			5 10 15 20	
		0.3	SILTY CLAY - very stiff, red mottled brown and grey silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>B D</td><td>0.3 0.4 0.5</td><td></td><td></td><td></td><td></td></pl<>		B D	0.3 0.4 0.5					
107	- 1	1.2-	- becoming grey below 0.8m		D	1.0				- h	
		1.2	Pit discontinued at 1.2m - limit of investigation								
106	-2									-2	
105	-3									-3	
104	- - - 4									-4	
103	- 5									-5	
	•										
102	- 6									-6	
	•										
101	-7									7	
	•										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	SAMPLING & IN SITU TESTING LEGEND									
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

Cornish Group Pty Ltd CLIENT:

PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 102.1 mAHD PIT No: 120 EASTING: 297255 NORTHING: 6237215

PROJECT No: 76571.02 **DATE:** 26/5/2014 SHEET 1 OF 1

	Darth	Description	ji D	Sampling & In Situ Testing				<u> </u>	Dunamia Papatromator Tast
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
102	- - -	TOPSOIL - brown silt and clay with some rootlets and gravel		B	0.3	S.			5 10 15 20
	0.4 -	SILTY CLAY - hard, orange and brown silty clay with some rootlets and trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
101	- 1 - 1 - -	- becoming grey below 1.0m		D	1.0				-1 1
	- - 1.6- -	Pit discontinued at 1.6m - limit of investigation		D	1.5				
100	-2								-2
	- 3 - 3 3								-3
98	- - - - 4 -								-4
	- - - - - 5								-5
16	- - - - -								
- 96 	- - 6 - - -								-6
	- 7 - 7 								-7
	- - -								

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				

CLIENT:

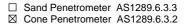
Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 104.1 mAHD PIT No: 121 EASTING: 297226 NORTHING: 6237127

PROJECT No: 76571.02 **DATE:** 26/5/2014 SHEET 1 OF 1

Γ			Description	. <u>u</u>		Sam	pling &	& In Situ Testing					
R	De (r	epth m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dynami (blo	c Penetrome ows per 150r	eter Test mm)	
		,	Strata	Ū	Ţ	Dep	San	Results & Comments		5	10 15	20	
-10	-		TOPSOIL - dark brown silty clay with roots and trace (ironstone) gravel								ſ		
ŧ	-	0.3	SILTY CLAY - very stiff to hard, orange and red silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>В</td><td>0.4 _0.5</td><td></td><td></td><td></td><td></td><td>Ę</td><td></td></pl<>		В	0.4 _0.5					Ę		
Ē			ciay with trace (ironstone) gravel, mc <pi< td=""><td>1/1</td><td>_D_</td><td>_0.5</td><td></td><td></td><td></td><td></td><td>L</td><td></td></pi<>	1/1	_D_	_0.5					L		
E				1							L		
-9	-1				D	1.0				-1			
ŀ	-	1.2	Pit discontinued at 1.2m	<u> </u>						-			
ŀ	-		- limit of investigation									:	
E													
ł	-2									-2			
-6	-									-			
ŀ	-											-	
Ē													
ł	-									-			
-6	-3									-3			
ŀ	-												
Ē													
ł	-												
	-4									- 4			
-0	-									-			
Ē	-												
ł	-												
ł	-												
-8	-5 -									-5			
Ē	[
ł	-												
ŀ	-												
	-6									-6			
-8	-												
[ĺ												
ŀ	ŀ												
ł	-												
-6	-7									-7			
Ē	-												
E	[
ł	ŀ												
Ł	ŀ									Ł :			

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	SAMPLING & IN SITU TESTING LEGEND									
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

Douglas Partners
 Geotechnics | Environment | Groundwater

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 104.4 mAHD PIT No: 122 EASTING: 297172 PROJECT N NORTHING: 6237073 DATE: 28/5/

PIT No: 122
 PROJECT No: 76571.02
 DATE: 28/5/2014
 SHEET 1 OF 1

	_		Description	ic		Sam		& In Situ Testing	-	Dunamia Danatromator Toot
님	De (n	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
\mid	-		Strata		Ĥ	ă	Sa	Comments	_	5 10 15 20
		0.3	TOPSOIL - light brown and grey silt and clay with some roots and rootlets							
104	•	0.3	SILTY CLAY - red and orange mottled brown silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td>1</td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>	1	D	0.5				
	- - - 1 -		 becoming grey mottled red with trace shale banding below 1.0m 		D/B	1.0				-1
100					D	1.5				
	-2	1.8	SHALE - low strength, brown, grey and orange shale with some silty clay banding		D	2.0				-2
102			 becoming low to medium strength, highly weathered below 2.5m 		D	2.5				
	-3				D	3.0				-3
101		3.2-	Pit discontinued at 3.2m - limit of investigation							
	- 4									-4
100	•									
	- 5									-5
-66	•									
	- 6									-6
- 8	•									
	-7									-7
- <u>16</u>										
-										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	ž	Water level	V	Shear vane (kPa)				

CLIENT:

Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington SURFACE LEVEL: 112.8 mAHD PIT No: 123 EASTING: 297007 **NORTHING:** 6237389

PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

		Description	Dic _		Sam		& In Situ Testing	-	Dynamic Penetrometer Test		
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
		Strata		É.	ă	Saı	Comments	_	5 10 15 20		
-	-	TOPSOIL - dark brown silt with some clay	R								
-	- 0.3-	SILTY CLAY - hard, red and orange mottled brown silty clay, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5						
112	- 0.6	Pit discontinued at 0.6m									
1	- 1	- limit of investigation									
ł	-										
-	-										
-	-										
111 -	-										
	-2								-2		
ŀ	-										
-	-										
-	-										
110											
	-3								-3		
-	-										
-	-										
-	-										
109	-										
	- 4								-4		
ŀ	-										
-	-										
108	-										
-6	-5								-5		
E	-5										
	-										
ŀ	-										
107	-										
	- 6								- 6		
ŀ	-										
ŀ	-										
ŀ	-										
106	-										
E	-7								-7		
E											
[
ŀ											
105	-										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LIN	G & IN SITU TESTING	LEG	SEND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

Cornish Group Pty Ltd CLIENT: PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 114.3 mAHD PIT No: 124 EASTING: 297130 PROJECT No: 76571.02 NORTHING: 6237447

DATE: 27/5/2014 SHEET 1 OF 1

\square	_		Description	.2		Sam		& In Situ Testing	-	Dunamia Danatromatar Taat
묍	De (n	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
\square			Strata FILLING - brown silty clay with some (ironstone and		-		Sa			5 10 15 20
4			shale) gravel							
		0.4	SILTY CLAY - very stiff, red mottled grey silty clay with some fine grained (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
			some line grained (ironstone) gravel, mc <pi< td=""><td>1/1</td><td></td><td></td><td></td><td></td><td></td><td>{ }</td></pi<>	1/1						{ }
	- 1				D	1.0				-1 I
13										
-			he coming your stiff to here he low 4 Fm		D	1.5				-
			- becoming very stiff to hard below 1.5m							
	-2				D	2.0				-2
~			- becoming grey mottled red below 2.0m							
Ę					D	2.5				
			 with some extremely low strength shale bands below 2.5m 	1/1						-
	-3				D	3.0				-3
		3.2	Pit discontinued at 3.2m						_	
=			- limit of investigation							
										-
	- 4									
110										
	-5									-5
-10-										-
Ē										
	-6									-6
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
	-7									-7
107										
										-
ŧ										
Ш										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

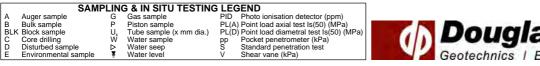
	Photo ionisation detector (ppm)
	A) Point load axial test Is(50) (MPa)
BLK Block sample U, Tube sample (x mm dia.) PL(I	D) Point load diametral test Is(50) (MPa)
C Core drilling W Water sample pp	Pocket penetrometer (kPa)
D Disturbed sample ▷ Water seep S	Standard penetration test
E Environmental sample F Water level V	Shear vane (kPa)

CLIENT: PROJECT:

Cornish Group Pty Ltd Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington SURFACE LEVEL: 111.9 mAHD PIT No: 125 EASTING: 297229 **NORTHING:** 6237491

PROJECT No: 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

	Donth	Description	hic				& In Situ Testing		Dynamic Penetrometer Test
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
	- - - 0.6 - - 0.8	FILLING - brown silty clay with rootlets and (ironstone) gravel SILTY CLAY - stiff to very stiff, red mottled grey silty clay, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td>0</td><td></td><td></td><td></td></pl<>		D	0.5	0			
	- 1 - 1 	Pit discontinued at 0.8m - limit of investigation							-1 Г
110	-2								-2
109	-3								-3
108	- - - 4 -								-4
107									-5
106	- 6								-6
105	-7								-7
104	- - - -								


RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Disused water poly pipe intercepted at 0.4m

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 108.9 mAHD
 PIT No: 126

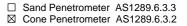
 EASTING:
 297323
 PROJECT No

 NORTHING:
 6237531
 DATE: 26/5/1

PIT No: 126 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

	D -		Description	jc r		Sam		& In Situ Testing		Dynamic Penetrometer Test
RL	De (n	epth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
			TOPSOIL - brown silt with some clay	M			S			5 10 15 20
	•	0.4	SILTY CLAY - stiff to very stiff, red mottled grey silty clay with trace (ironstone) gravel, mc~pl		D	0.5				
108	- 1 - 1		- becoming grey mottled orange below 1.0m		D	1.0				-1]
		1.8	- with very low strength shale banding below 1.5m		D	1.5				
107	-2	1.0	SHALE - extremely low to low strength, extremely weathered, grey and orange shale with some silty clay banding		D	2.0				-2
			^L - becoming low to medium strength, highly weathered, grey with trace silty clay banding below 2.0m		D	2.5				
106	- 3				D	3.0				-3
		3.2	Pit discontinued at 3.2m - limit of investigation							
105	- - - 4									- 4
104	- 5									-5
103	- 6									-6
102	- 7 -									-7
101										

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LIN	G & IN SITU TESTING	LEG	SEND	1
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 107.4 mAHD
 PIT No: 127

 EASTING:
 297061
 PROJECT No

 NORTHING:
 6237304
 DATE: 26/5/

PIT No: 127 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

		Description	. <u>u</u>		Sam	pling &	& In Situ Testing		
ᆔ	Depth (m)	of	Graphic Log	e	Ę	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	()	Strata	õ	Type	Depth	Sample	Results & Comments	>	5 10 15 20
		TOPSOIL - dark brown silt and clay with some rootlets							
107	0.3	SILTY CLAY - very stiff, red and orange silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
	0.6	Pit discontinued at 0.6m - limit of investigation							·
	- 1								-1
106									
 	-2								-2
105									
· ·									
· ·	-3								-3
104									
· ·	- 4								-4
103									
	-5								-5
102									
	- 6								-6
101									
	-7								7
9									
· •									
╞									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	3 & IN SITU TESTING	LEG	BEND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

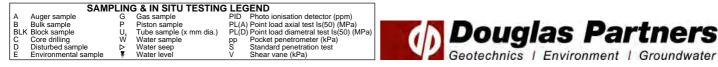
 SURFACE LEVEL:
 110.7 mAHD
 PIT No:
 128

 EASTING:
 297145
 PROJECT No

 NORTHING:
 6237370
 DATE:
 26/5/.

PIT No: 128 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

			Description	lic		Sam		& In Situ Testing	-		
R	De (I	epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)	
			Strata		ŕ	De	Sar	Comments		5 10 15 20	
110	-	0.0	FILLING - brown silty clay with some gravel and trace anthropogenics comprising hose section, tile fragments and wooden paling		D	0.5					
-	- 1 -	0.8	SILTY CLAY - hard, red mottled grey silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>1.0</td><td></td><td></td><td></td><td>-1</td><td>>></td></pl<>		D	1.0				-1	>>
109	-		 becoming grey mottled orange with some shale bands below 1.5m 		D	1.5					
-	- -2 -				D	2.0				-2	
108	-	2.8	SHALE oversmalk law strength oversmalk westhored		D	2.5					
Ē	-3		SHALE - extremely low strength, extremely weathered, grey shale and grey silty clay banding		D	3.0				-3	
	-	3.2	Pit discontinued at 3.2m - limit of investigation	1							
107	- 4									-4	
- - -	- - -										
106	-										
-	-5									-5	
105	6 -									-6	
104	- - -										
	-7									-7	
103											
Ŀ	ŀ										


RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

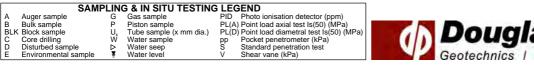
REMARKS: Test pit moved 5m north due to inaccessibility; Disused water poly pipe intercepted at 0.3m

CLIENT: Cornish Group Pty Ltd PROJECT:

Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington SURFACE LEVEL: 107.1 mAHD PIT No: 129 **EASTING:** 297274 **NORTHING:** 6237428

PROJECT No: 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

	D .		Description	jc D		Sam		& In Situ Testing		Dunomia Panatromator Tost
RL	(n	epth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
107	-		FILLING - brown and orange silt with some clay and rootlets				0			
		0.4	SILTY CLAY - grey and red mottled orange silty clay with some (ironstone) gravel, mc~pl		D	0.5				
106	- 1				D	1.0				
			- becoming very stiff, mc <pl 1.5m<="" below="" td=""><td></td><td>D</td><td>1.5</td><td></td><td></td><td></td><td></td></pl>		D	1.5				
105	-2				D	2.0				-2
		2.8	- with some extremely low to very low strength red shale bands below 2.5m		D	2.5				
104	-3	3.2	SHALE - extremely low to very low strength, extremely weathered, grey and red shale and grey mottled red silty clay banding		D	3.0				-3
		5.2	Pit discontinued at 3.2m - limit of investigation							
103	- 4									-4
102	-5									-5
101	-6									
100	-7									-7


RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Disused water poly pipe intercepted at 0.4m

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL:
 104.5 mAHD
 PIT No:
 130

 EASTING:
 297360
 PROJECT No

 NORTHING:
 6237454
 DATE:
 26/5/2

PIT No: 130
 PROJECT No: 76571.02
 DATE: 26/5/2014
 SHEET 1 OF 1

		Description	.ci		Sam	pling &	& In Situ Testing			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pe (blows p	netrometer Test per 150mm)
		Strata		ŕ	De	Sar	Comments		5 10	15 20
		TOPSOIL - brown silt with some clay and (ironstone) gravel								J
4	0.4	SILTY CLAY - very stiff, grey mottled red silty clay with	р <i>д</i> х]
-9-	0.6	trace (ironstone) gravel, mc <pl< p=""></pl<>	<u>/</u> /	D	0.5					
		Pit discontinued at 0.6m - limit of investigation							- L	_
	-1								-1	
103										
	-2								-2	
	-									
102										
	- 3								-3	
101									-	
	- 4								-4	
									-	
10-										
	-5								-5	
- 66										
	- 6								- 6	
	5									
╞┝										
-8-										
	-7								-7	
- 46										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	3 & IN SITU TESTING	LEG	BEND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL:
 104.7 mAHD
 PIT No:
 131

 EASTING:
 297098
 PROJECT No

 NORTHING:
 6237242
 DATE:
 265/

PIT No: 131 PROJECT No: 76571.02 DATE: 26/5/2014 SHEET 1 OF 1

	Depth	Description	hic				& In Situ Testing	er	Dynamic Penetrometer Test
R	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
	- 0.4	TOPSOIL - dark brown and black (alluvial) sediment and clay SILTY CLAY - stiff to very stiff, orange mottled grey silty clay with some gravel, mc~pl		D	0.5				
104	- 0.6 - - - - 1 -	 silty clay with some gravel, mc~pl Pit discontinued at 0.6m limit of investigation 	<u> </u>						
	- - - - - 2								-2
102	- - - - -								
	-3 								-3
101	- 4								-4
100	- - - - - - 5								-5
- · · · · · · · · · · · · · · · · · · ·	- - - -								
	- - 6 - - -								
	- 7								-7
	-								

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Test pit located at edge of dam

Г	SAM	PLIN	IG & IN SITU TESTIN	G LE	GEND	7
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	a) Dougles Berners
- 0	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
	D Disturbed sample	⊳	Water seep	S	Standard penetration test	
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater
_						

Cornish Group Pty Ltd CLIENT:

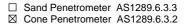
PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 107.6 mAHD PIT No: 132 EASTING: 297172 **NORTHING:** 6237299

PROJECT No: 76571.02 **DATE:** 27/5/2014 SHEET 1 OF 1

			Description	lic		Sam		& In Situ Testing	-	
Ч	Deptł (m)	h	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata	U	ŕ	De	San	Comments	_	5 10 15 20
Ł	-		TOPSOIL - brown silty clay with roots	$\mathcal{D}\mathcal{D}$						
Ł	- 0.	.3-	SILTY CLAY - hard, red and orange mottled brown silty							ł G
-20	- 0	.6-	SILTY CLAY - hard, red and orange mottled brown silty clay with roots, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
-	-	.0	Pit discontinued at 0.6m							ł i G
Ł	- - 1		- limit of investigation							
Ł	-									
Ł	-									
. 90	-									
Ē	-									
	-2									-2
Ł	-									
ŀ	-									
05	-									
	-									
	- - 3									-3
	-									
ŀ	-									
- 40	-									
	-									
	- 4									-4
	-									
ŀ	-									
03	-									
[-									
Ł	- -5									-5
Ł	-									
Ł	-									
02	-									
	-									
ŧ	- - 6									-6
ŀ	-									
ŀ	-									
101	-									
	-									
ŀ	- - 7									-7
ŀ	-									
ţ	-									
100	-									
	-									
-	-									

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

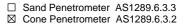
CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 104.7 mAHD PIT No: 133 EASTING: 297285 PROJECT No NORTHING: 6237331 DATE: 26/5/2

PIT No: 133
 PROJECT No: 76571.02
 DATE: 26/5/2014
 SHEET 1 OF 1

\square	_		Description	ic		Sam		& In Situ Testing	-	D D
묍	Dep (m))	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata		Ĥ	ă	Sar	Comments		5 10 15 20
		0.2	TOPSOIL - brown and grey silt and clay	ĽΩ						t L
104			SILTY CLAY - very stiff to hard, orange mottled brown and grey silty clay with trace fine grained (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
	- 1 -	1 0	- becoming grey below 1.0m		D	1.0				-1
103		1.3-	SHALE - extremely low to very low strength, extremely weathered, grey and orange shale with some silty clay banding		D	1.5				
	-2		 becoming low to very low strength, highly weathered below 2.0m 		D	2.0				-2
102	•		- becoming red below 2.5m		D	2.5				
	-3	3.2-			D	3.0				-3
		5.2	Pit discontinued at 3.2m - limit of investigation							
-5										
	- 4									-4
100	•									-
	-5									-5
-66										
	- 6									-6
- 8-										
	-7									-7
. 26	•									
Ľ										

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

S/	AMPLIN	G & IN SITU TESTING	G LEG	END	1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample		Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	ole 📱	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 102.7 mAHD PIT No: 134 EASTING: 297349 PROJECT No NORTHING: 6237363 DATE: 26/5/.

PIT No: 134
 PROJECT No: 76571.02
 DATE: 26/5/2014
 SHEET 1 OF 1

		Description	.c		Sam		& In Situ Testing	-	Dur	i- D+	т	
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	(blows per	rometer Tes 150mm)	t
		Strata		ŕ	De	Sar	Comments		5	10	15 20	
-	- - - 0.4	TOPSOIL - grey and dark brown silt with trace clay and some (ironstone) gravel (possible filling)	88									
E	- 0.6	SILTY CLAY - very stiff, orange brown silty clay with trace (ironstone) gravel, mc~pl	///	D	0.5							
102	-	Pit discontinued at 0.6m								L,		
ţ	- - 1	- limit of investigation							-1			
ţ	-											
ŧ	-											
Ì.	-											
-9	-											
E	-2								-2			
ŀ	-											
ţ	-											
-6	-											
ŀ	-											
F	-3								-3			
F	-											
Ē	-											
-66	-											
ł	- 4								-4			
Ł	-											
ţ	-											
ŧ	-											
-86	-											
F	-5								-5			
E	-											
ł	-											
- 16	-											
	-											
ţ	-6								-6			
ŧ	-											
F	-								-			
-96									[
E	-7								-7			
ł	-								ļ			
ŀ	-											
ŧ	-											
- 95	-											
Ŀ	-								t i			

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

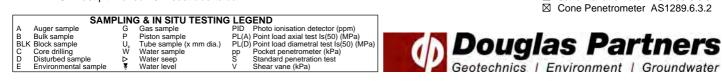
CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 105.7 mAHD PIT No: 135 EASTING: 297196 PROJECT No NORTHING: 6237204 DATE: 27/5/2

PIT No: 135 PROJECT No: 76571.02 DATE: 27/5/2014 SHEET 1 OF 1

	_	Description	.e		Sam		& In Situ Testing	-				
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water		amic Pen (blows		
2	- - - 0.4 - - 0.6 -	Strata TOPSOIL - dark brown silt with some clay and roots SILTY CLAY - stiff to very stiff, brown and orange silty Clay with trace (ironstone) gravel and roots, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td>Š</td><td></td><td></td><td></td><td>10</td><td>15</td><td>20</td></pl<>		D	0.5	Š				10	15	20
10	- - - 1 - -	Pit discontinued at 0.6m - limit of investigation							- - - - - -			
104	-2								-2			
103	- - - - 3 -								- 3			
102	- - - - - - - - - - - - - 4											
101	- - - - - - 5 -											
100												
66	- 7											
98	- - - -											

RIG: JCB 4WD backhoe - 450mm bucket


LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

□ Sand Penetrometer AS1289.6.3.3

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Test pit moved ~3m east due to dam

Cornish Group Pty Ltd CLIENT: PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 107.8 mAHD PIT No: 136 **EASTING:** 297170 **PROJECT No:** 76571.02 NORTHING: 6237131

DATE: 26/5/2014 SHEET 1 OF 1

Π	_		Description	jc		Sam		& In Situ Testing	-	Durania Danatamatan Tart
R	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata		Ĥ	ă	Sar	Comments		5 10 15 20
			TOPSOIL - brown silty clay with roots, rootlets and trace (ironstone) gravel							
	•	0.3-	SILTY CLAY - very stiff, red and orange mottled brown silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
107					D	1.0				
	- I	1.3-	 with some extremely low strength, extremely weathered shale banding below 1.0m 	1	D	1.0				
106	•	1.0	SHALE - very low to low strength, extremely weathered, red and grey shale with some silty clay banding		D	1.5				
	-2 -				D	2.0				-2
			 becoming low to medium strength, highly weathered below 2.5m 		D	2.5				
105	- 3				D	3.0				-3
	•	3.2-	Pit discontinued at 3.2m - limit of investigation							
104										
	- 4 -									-4
103										
	-5									-5
102	- 6									- 6
101										
	-7									-7
100										
- -										

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLIN	G & IN SITU TESTIN	NG LEG	END]
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	11
BLK Block sample	U,	Tube sample (x mm dia.)) PL(D)	Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp .	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sa	mple 📱	Water level	V	Shear vane (kPa)	

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

 SURFACE LEVEL: 102.2 mAHD
 PIT No: 137

 EASTING:
 297246
 PROJECT No

 NORTHING:
 6237176
 DATE: 26/5/2

PIT No: 137
 PROJECT No: 76571.02
 DATE: 26/5/2014
 SHEET 1 OF 1

arr Description Bit Sum Testing Number of the sum testing 3	Π		Description	. <u>u</u>		Sam	pling	& In Situ Testing		
P O D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	님	Depth (m)	of	raph Log	be	pth	nple	Results &	Nater	Dynamic Penetrometer Test (blows per 150mm)
B 0.4 SLTY CLAY - hard, orange and brown motifed silty D 0.5 0.6 Staty with roots Pit discontinued at 0.6m 1 1 - limit of investigation 1 1 1 - limit of investigation 1 1 2 2 2 2 3 3		. ,		U	тy	De	San	Comments	[
0.4 0.5 0.5 0.6 deg with roots 0.6 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 4 4 4 4 4 4 5 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 7 0	10	-	TOPSOIL - dark brown silty clay with some rootlets	M						
SiLTY CLAY - hard, orange and brown motiled silty p p.5 ose - day with roots Pri discontinued at 0.6m Pri discontinued at 0.6m - - imit of investigation - - imit of investigation - - imit of investigation - - a		- 0.4) XX						
Pid discontinued at 0.6m - Imit of investigation - Imit of investigatin		-	SILTY CLAY - hard, orange and brown mottled silty		D	0.5				
			Pit discontinued at 0.6m							
		- 1	- limit of investigation							- 1
	-ē	-								
		-								
	ŀ	-								
	Ē									
		-2								-2
	-§	_								
		-								
		.								
		.								
		-3								-3
	-6	-								
		-								
	ŀ	-								
	Ē									
		- 4								
	5	-								
		-								
		-								
		-5								-5
	ł. ł	-								
		-								
		-								
	Ē	-								
	Ē	-6								-6
	-%	-								
	[
	[
	ŀ									
		-7								-7
	-8	-								
		-								
		-								
		-								

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAM	PLIN	3 & IN SITU TESTIN	G LEG	END	
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	¥	Water level	V	Shear vane (kPa)	
					-

CLIENT:Cornish Group Pty LtdPROJECT:Salinity Investigation and SMPLOCATION:51 St Andrews Road, Leppington

SURFACE LEVEL: 104.4 mAHD PIT No: 138 EASTING: 297233 PROJECT N NORTHING: 6237068 DATE: 26/5/

PIT No: 138
 PROJECT No: 76571.02
 DATE: 26/5/2014
 SHEET 1 OF 1

			Description	ic r		Sam		& In Situ Testing		Dunamia Panatromator Taat
R	De (n	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
	-		TOPSOIL - dark brown silt and clay with some gravel	M			0			
104	- - -	0.3-	SILTY CLAY - hard, orange and red mottled grey silty clay with some (ironstone) gravel and roots, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
	- - - 1 - -	1.3-	- becoming grey mottled orange below 1.0m		D	1.0				
103	-		SHALE - very low strength, highly weathered, red and grey shale with some silty clay banding		D	1.5				
	- -2 -		- becoming low to medium strength below 2.0m		D	2.0				-2
102	- - -				D	2.5				
	-3 -3				D	3.0				-3
101 -	-	3.2-	Pit discontinued at 3.2m - limit of investigation							
	- - 4 - -									-4
	- - -									
	- 5 - - - -									-5
	- - - - 6									-6
- 8	- - -									
	- - - 7 -									7
	-									
	-									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

JAINIF	LIN	G & IN SITU TESTING	i LEG	SEND
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT:

Cornish Group Pty Ltd PROJECT: Salinity Investigation and SMP LOCATION: 51 St Andrews Road, Leppington

SURFACE LEVEL: 104.4 mAHD PIT No: 139 EASTING: 297208 **NORTHING:** 6237020

PROJECT No: 76571.02 **DATE:** 28/5/2014 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	-	Durantia Denotromotor Text
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata TOPSOIL - dark brown silty clay with rootlets		Ĥ	ă	Sa	Comments	-	5 10 15 20
Ē	- 0.3-								
104	- - - 0.6-	SILTY CLAY - very stiff, orange and red silty clay with trace (ironstone) gravel, mc <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td></pl<>		D	0.5				
ł	-	Pit discontinued at 0.6m - limit of investigation							
ŀ	- -1								
Ē									
103	-								
Ē	-								
Ē	-2								-2
ŀ	-								
102									
ł	-								
ŀ	-								
Ē	-3								-3
-5	-								
ŀ	-								
ŀ									
ŧ	-4								-4
l	-								
Ę	-								
ł	-								
Ē	-5								-5
E									
-66	-								
ŀ									
ŀ	-6								-6
ŀ	-								
- 86									
ŀ									
ŀ	-								
ŀ	-7								-7
- 46	-								
ŀ	-								
Ē									

RIG: JCB 4WD backhoe - 450mm bucket

LOGGED: MJC

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLIN	G & IN SITU TESTING		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)

Appendix C

Laboratory Summary Table

		Test Lo	cation			Sample Depth	рН	Chloride Concentration	Sulphate Concentration	Resistivity	Soil Condition			Sample Age									
Test Bore or Pit	East (m MGA56)	North (m MGA56)	RL (m AHD)	Proposed Cut (-) and Fill (+) (m)	Sample ID	(m bgl)	(pH units)	(mg/kg)	(mg/kg)	By inversion of EC1:5 Ω.cm	[AS2159-2009]	Aggr. to Concrete - from sample pH	Aggr. to Concrete - from Sulphate conc.	Aggr. to from sa [AS2									
101	296950.9	6237410.5	113.3	-1	101/0.5	0.5	4.9	410	21	2857	B	Mild	Non-Aggressive	Non-Ag									
					101/1.0 101/1.5	1.0 1.5	4.9 5.3	640 690	53 63	1887 1754	B B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
					101/2.0 101/2.5	2.0 2.5	6.2 6.2			2857 2778	B	Non-Aggressive Non-Aggressive		Non-Ag Non-Ag									
102	297065.0	6237441.0	114.9	-2	101/3.0 102/0.5	3.0 0.5	7 5.1	300	61	2941 3125	B	Non-Aggressive Mild	Non-Aggressive	Non-Ag Non-Ag									
103	297171.0	6237491.0	115.0	-3	103/0.5 103/1.0	0.5	4.7	000	01	2703	В	Mild	Ren riggrooorro	Non-Ag									
					103/1.5	1.0 1.5	4.7	340	170	2381 2439	B	Mild Mild	Non-Aggressive	Non-Ag									
					103/2.0 103/2.5	2.0 2.5	4.7	340	210	2273 2326	B	Mild	Non-Aggressive	Non-Ag Non-Ag									
					103/3.0 103/3.5	3.0 3.5	4.9 4.9	310 280	210 180	2632 2778	B	Mild	Non-Aggressive	Non-A									
					103/4.0	4.0	4.9	280	180	2564	В	Mild	Non-Aggressive	Non-Ag Non-Ag									
					103/4.5 103/5.0	4.5 5.0	4.8 5			2439 2941	B	Mild Mild		Non-Ag Non-Ag									
104 105	297251.0 297343.0	6237529.0 6237570.0	113.9 108.7	-2 -2	104/0.5 105/0.5	0.5 0.5	5.5 4.8			8333 1818	B	Mild Mild		Non-Ag Non-Ag									
100	237040.0	0201010.0	100.7	-	105/1.0	1.0	4.7			1538	В	Mild		Non-Ag									
					105/1.5 105/2.0	1.5 2.0	4.8 4.7			1613 1351	B	Mild Mild		Non-Ag Non-Ag									
					105/2.5 105/3.0	2.5 3.0	4.7 5.7	660	190	1695 1923	B	Mild Non-Aggressive	Non-Aggressive	Non-Ag Non-Ag									
					105/3.5 105/4.0	3.5 4.0	5.7 6.8	740	180	1724 1515	BB	Non-Aggressive Non-Aggressive	Non-Aggressive	Non-Ag Non-Ag									
					105/4.5	4.5	5.7	460	150	2222	В	Non-Aggressive	Non-Aggressive	Non-Ag									
106 107	297010.0 297068.2	6237330.0 6237375.2	108.3 111.6	-0.5 -0.5	106/0.5 107/0.5	0.5 0.5	4.7 4.8	570 360	230 300	1852 2174	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
					107/1.0 107/1.5	1.0 1.5	4.8			1667 1639	B	Mild Mild		Non-Ag Non-Ag									
					107/2.0	2.0	4.9			1471	В	Mild		Non-Ag									
				·	107/2.5 107/3.0	2.5 3.0	4.9 4.8			1724 1613	B	Mild Mild		Non-Ac Non-Ac									
108 109	297170.0 297274.2	6237424.5 6237468.4	111.8 108.6	-1 -1.5	108/0.5 109/0.5	0.5	4.4	940 280	170 280	1282 2632	B	Moderate Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
110	297359.1	6237505.2	106.1	-2	110/0.5 110/1.0	0.5	4.8	500	270	2083	B	Mild		Non-Ag									
					110/1.5	1.0 1.5	4.8			1818 1786	В	Mild	Non-Aggressive	Non-Ag Non-Ag									
					110/2.0 110/2.5	2.0 2.5	4.8 4.9	570 570	260 280	1818 1724	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
111		. 6237306.8	108.0	1	110/3.0 111/0.5	3.0 0.5	5	200	130	1695 3846	B	Mild Mild	Non-Aggressive	Non-Ac Non-Ac									
112	297193.5	6237350.6	108.4	0.5	112/0.5	0.5	5.2	100	91	5882	В	Mild	Non-Aggressive	Non-Ag									
113 114	297275.3 297336.5	6237387.0 6237399.7	105.7 104.1	-0.5 1	113/0.5 114/0.5	0.5	4.8 5.4	790 470	320 150	1351 2273	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
115 116	297065.0 297145.3	6237243.0 6237247.2	106.5 104.9	2 1.5	115/0.5 116/0.5	0.5 0.5	5 4.7	180 400	120 170	4167 2439	BB	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
117	297229.0									-1.5	117/0.5	0.5	4.7	400	170	1316	В	Mild	Non-Aggressive	Non-Ag			
																					117/1.0 117/1.5	1.0 1.5	4.9 4.9
					117/2.0 117/2.5	2.0 2.5	5.2 5.3			1493 1163	B	Mild Mild		Non-Ag Non-Ag									
	. 297294.6	. 6237297.4	103.7		117/3.0	3.0	5.6	700	202	1563	В	Non-Aggressive	No. A succession	Non-Ag									
118 119	297122.0	6237168.0	108.0	-1 0.5	118/0.5 119/0.5	0.5	4.7 4.6	780 590	200 300	1515 1613	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
120 121	297255.3 297225.8	6237215.1 6237127.1	102.1 104.1	1	120/0.5 121/0.5	0.5	4.8	330 600	40 370	3448 1587	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
122	297172.0									122/0.5 122/1.0	0.5	4.8 5	740	210	2174 1515	B	Mild Mild	Non-Aggressive	Non-Ag Non-Ag				
														122/1.5	1.5	5.5			1695	В	Mild		Non-Ag
							122/2.0 122/2.5	2.0 2.5	5.6 5.9	600	190	1754 1961	B	Non-Aggressive Non-Aggressive	Non-Aggressive	Non-Ag Non-Ag							
123	. 297007.5		112.8	-1	122/3.0 123/0.5	3.0 0.5	6.3 5			1639 3846	B	Non-Aggressive		Non-Ag Non-Ag									
123	297129.5	6237388.5 6237446.9	0007440.0	0007440.0	0007440.0	0007440.0	114.3	-1 -2	124/0.5	0.5	4.6			2000	В	Mild		Non-Ag					
						124/1.0 124/1.5	1.0 1.5	4.6 4.6			1613 1316	B	Mild Mild		Non-Ag Non-Ag								
						124/2.0 124/2.5	2.0 2.5	4.7	1000 640	260 180	1250 1786	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag								
125	. 297228.5	6237491.1	111.9	2	124/3.0 125/0.5	3.0 0.5	4.8			1408 3226	В	Mild		Non-Ag									
125	297322.9	6237531.2	108.9	-2 -3	126/0.5	0.5	5.2			5882	B	Mild		Non-Ag Non-Ag									
					126/1.0 126/1.5	1.0 1.5	4.9			2500 2381	B	Mild Mild		Non-Ag Non-Ag									
					126/2.0 126/2.5	2.0 2.5	5.2 5.1	220 340	110 150	3448 2703	BB	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
					126/3.0	3.0	5.3	540	130	2857	В	Mild	Non-Aggressive	Non-Ag									
127 128	297060.9 297144.8	6237303.7 6237370.2	107.4 110.7	1 -1	127/0.5 128/0.5	0.5 0.5	4.8 5.8			1818 7692	B	Mild Non-Aggressive		Non-Ag Non-Ag									
	237144.0				128/1.0 128/1.5	1.0 1.5	5	110	220	4167 4545	B	Mild Mild	Non-Aggressive	Non-Ac Non-Ac									
								128/2.0	2.0	5.1	200	180	3571	В	Mild	Non-Aggressive	Non-Ag						
				ł	128/2.5 128/3.0	2.5 3.0	4.9 5.1			2564 2222	B	Mild Mild		Non-Ag Non-Ag									
129	297273.8	6237427.7	107.1	-1	129/0.5 129/1.0	0.5 1.0	5.8 5.4	500	390	4545 1754	BB	Non-Aggressive Mild	Non-Aggressive	Non-Ag Non-Ag									
					129/1.5	1.5	5.4	520	480	1587	В	Mild	Non-Aggressive	Non-Ag									
				1	129/2.0 129/2.5	2.0 2.5	5.5 5.5	390	370	1754 1818	B	Mild	Non-Aggressive	Non-Ag Non-Ag									
130	. 297360.5	6237454.4	104.5	0.5	129/3.0 130/0.5	3.0 0.5	5.7 4.9	690	200	2222 1471	B	Non-Aggressive Mild	Non-Aggressive	Non-Ag Non-Ag									
131 132	297098.5 297172.4	6237241.9 6237299.0	104.7 107.6	2.5	131/0.5 132/0.5	0.5	5.5	78 480	110 190	11905 2128	B	Mild	Non-Aggressive Non-Aggressive	Non-Ag									
132	297172.4 297285.3	6237299.0	107.6	-1 -1	133/0.5	0.5	4.8			1515	В	Mild		Non-Ag Non-Ag									
					133/1.0 133/1.5	1.0 1.5	4.9 5.6	730 820	190 250	1538 1389	B	Mild Non-Aggressive	Non-Aggressive Non-Aggressive	Non-Ac Non-Ac									
					133/2.0 133/2.5	2.0 2.5	5			1471	B	Mild		Non-Ag Non-Ag									
					133/3.0	3.0	5.3	980	260	1220	В	Mild	Non-Aggressive	Non-Ag									
134 135	297348.6 297196.3	6237362.6 6237203.8	102.7 105.7	1 2.5	134/0.5 135/0.5	0.5 0.5	5.2 6.8	130 740	170 170	4545 1493	BB	Mild Non-Aggressive	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
136	297169.5	6237131.0	107.8	-0.5	136/0.5 136/1.0	0.5 1.0	4.8 5	760	360	1351 1408	B	Mild	Non-Aggressive	Non-Ag Non-Ag									
					136/1.5	1.5	5.3	780	320	1429	В	Mild	Non-Aggressive	Non-Ac									
					136/2.0 136/2.5	2.0 2.5	5.5 5.6			1613 1667	B	Mild Non-Aggressive		Non-Ag Non-Ag									
137	297245.7	6237175.7	102.2	1.5	136/3.0 137/0.5	3.0 0.5	5.6 5.2	670	59	1389 1852	B	Non-Aggressive Mild	Non-Aggressive	Non-Ag Non-Ag									
137	297233.3	6237068.4	102.2	-0.5	138/0.5	0.5	4.8			1667	В	Mild		Non-Ag									
	297233.3	7233.3 6237068.4			138/1.0 138/1.5	1.0 1.5	4.8 5	880 680	450 400	1266 1493	B	Mild Mild	Non-Aggressive Non-Aggressive	Non-Ag Non-Ag									
														Non-Ag									
					138/2.0 138/2.5	2.0	5.1	680	400	1538 1124	B	Mild	Non-Anaressive	Non-Ag									
139		6237020.0	104.4	-0.5	138/2.0 138/2.5 138/3.0 139/0.5	2.0 2.5 3.0 0.5	5.1 5.1 5.4 5.4	680 650 120	400 340 76	1538 1124 1493 6667	B B B B	Mild Mild Mild Mild	Non-Aggressive Non-Aggressive Non-Aggressive										

Aggressivity Cla	ee .	
gr. to Steel -	Aggr. to Steel -	Aggr. to Steel -
m sample pH AS2159-2009]	from Chloride conc.	from sample Resistivity
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive
n-Aggressive		Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Non-Aggressive
n-Aggressive n-Aggressive		Mild Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Hon Aggreeente	Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Non-Aggressive
n-Aggressive		Mild
n-Aggressive n-Aggressive	1	Mild Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive Mild
n-Aggressive n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Non-Aggressive Mild
n-Aggressive	Non Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive		Mild Mild
n-Aggressive		Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Mild
n-Aggressive		Mild Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Non-Aggressive
n-Aggressive		Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive		Non-Aggressive Mild
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive
n-Aggressive		Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive
n-Aggressive		Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Non-Aggressive Mild
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non Aggregative	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Non-Aggressive
n-Aggressive	Non-Aggressive	Non-Aggressive
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Non-Aggressive
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive		Mild Mild
n-Aggressive		Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
n-Aggressive	Non-Aggressive	Mild
n-Aggressive n-Aggressive	Non-Aggressive	Mild Mild
	Non-Aggressive	Mild
n-Aggressive		
n-Aggressive n-Aggressive n-Aggressive	Non-Aggressive Non-Aggressive	Mild Non-Aggressive

Test Bor or PR image of the stand of the st	n Class) (for detailed soil logs see Report Appendix)	Textural Factor (M) [after DLWC] 14 10 6.5 8.5 8.5 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sandy loam Loam Heavy clay Light clay Light clay Light clay Light clay Loam Light clay Loam Medium clay Sandy loam Light clay Light clay	14 10 6.5 8.5 8.5 10 8 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Heavy clay Light clay Light clay Light clay Loam Medium clay Sandy loam Light medium clay Light clay	6.5 8.5 8.5 10 8 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Light clay Light clay Loam Light medium clay Loam Medium clay Sandy loam Light clay Light clay	8.5 8.5 8.5 10 8 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Loam Light medium clay Loam Medium clay Sandy loam Light clay Light clay	8.5 10 8 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
103 297171.0 6237491.0 115.0 -3 1030.5 0.5	Light medium clay Loam Medium clay Sandy Ioam Light clay Light clay	8 10 7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Medium clay Sandy loam Light clay Light clay Light clay Light clay Light clay Light clay Light clay Light clay Loam Loam	7.5 14 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Light clay Light clay Light clay Light clay Light clay Light clay Light clay Light clay Loam Light clay	8.5 8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Light clay Light clay Light clay Light clay Light clay Light clay Loam Loam Light clay	8.5 8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Light clay Light clay Light clay Loam Light clay	8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light clay Light clay Loam Light clay		
105 297343.0 6237570.0 108.7 -2 105/1.5 0.5	Loam Light clay	8.5	
106/1.5 1.5 1.6		8.5 10	
Image: second		8.5 8.5	
106 297010.0 6237330.0 108.3 -0.5 106/0.5 0.5 1.6 7.5 2.1 Highly Sodic 107 297068.2 6237375.2 111.6 -0.5 107/1.0 1.0 2 8.4 24 Highly Sodic	Light clay Light clay	8.5 8.5	
Image: height base in the image: height base in	Light clay Light clay	8.5 8.5	
106 297010.0 6237330.0 108.3 -0.5 0.6 - <th -<<="" td=""><td>Light clay</td><td>8.5</td></th>	<td>Light clay</td> <td>8.5</td>	Light clay	8.5
107/1.0 1.0 2 8.4 24 Highly Sodic	Light clay Loam	8.5 10	
	Clay loam Loam	9 10	
107/1.5 1.5 107/2.0 2.0	Loam Loam	10 10	
	Loam Light clay	10 8.5	
108 297170.0 6237424.5 111.8 -1 108/0.5 0.5 1.7 8 21 Highly Sodic	Light clay	8.5	
109 297274.2 6237468.4 108.6 -1.5 109/0.5 0.5 1.5 9 17 Highly Sodic 110 297359.1 6237505.2 106.1 -2 110/0.5 0.5 -	Clay loam Clay loam	9 9	
110/1.0 1.0 110/1.5 1.5	Light clay Loam	8.5 10	
110/2.0 2.0 3.5 13 27 Highly Sodic 110/2.5 2.5 <td>Clay loam Clay loam</td> <td>9</td>	Clay loam Clay loam	9	
<u> </u>	Clay loam Light medium clay	9	
112 297193.5 6237387.0 108.4 0.5 1120.5 0.5 113 297275.3 6237387.0 106.7 -0.5 113/0.5 0.5 </td <td>Light clay</td> <td>8.5</td>	Light clay	8.5	
114 <u>297336.5</u> <u>6237399.7</u> 104.1 1 114/0.5 0.5 ()	Clay loam Clay loam	9 9	
115 297065.0 6237243.0 106.5 2 115/0.5 0.5 116 297145.3 6237247.2 104.9 1.5 116/0.5 0.5	Light clay Light clay	8.5 8.5	
117 297229.0 6237283.8 105.9 -1.5 117/0.5 0.5 117/1.0 1.0 1.0 1.0 1.0 1.0 1.0	Light clay Clay loam	8.5	
117/1.5 1.5 3 12 25 Highly Sodic 117/2.0 2.0	Light clay Loam	8.5 10	
	Loam Clay loam	10 9	
<u>118</u> <u>297294.6</u> <u>6237297.4</u> <u>103.7</u> <u>-1</u> <u>118/0.5</u> <u>0.5</u>	Clay loam	9	
119 297122.0 6237168.0 108.0 0.5 119/0.5 0.5 120 297255.3 6237215.1 102.1 1 120/0.5 0.5 <td>Loam Clay loam</td> <td>10 9</td>	Loam Clay loam	10 9	
121 297225.8 6237127.1 104.1 1 121/0.5 0.5 122 297172.0 6237073.0 104.4 -1 122/0.5 0.5	Loam Loam	10 10	
122/1.0 1.0 3.9 14 28 Highly Sodic 122/1.5 1.5 <td>Light clay Medium clay</td> <td>8.5</td>	Light clay Medium clay	8.5	
122/2.0 2.0 4.8 15 32 Highly Sodic 122/2.5 2.5 <td>Light clay Light clay</td> <td>8.5 8.5</td>	Light clay Light clay	8.5 8.5	
	Light clay	8.5	
124 297129.5 6237446.9 114.3 -2 124/0.5 0.5 (Constraints)	Clay loam Clay loam	9 9	
124/1.0 1.0 124/1.5 1.5	Loam Loam	10 10	
124/2.0 2.0 3.2 10 32 Highly Sodic 124/2.5 2.5 2.6 8.3 31 Highly Sodic	Loam Loam	10 10	
. . 124/3.0 3.0 .	Loam Loam	10 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clay loam	9	
126/1.5 1.5	Clay loam Clay loam	9	
126/2.0 2.0 3.1 8.9 35 Highly Sodic 126/2.5 2.5 3.2 9.7 33 Highly Sodic	Light clay Light clay	8.5 8.5	
. . . 126/3.0 3.0 127 297060.9 6237303.7 107.4 1 127/0.5 0.5	Light clay Loam	8.5 10	
128 297144.8 6237370.2 110.7 -1 128/0.5 0.5	Loam Loam	10 10	
120/10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Loam	10 10 10	
128/2.5 2.5	Loam	10	
129 297273.8 6237427.7 107.1 -1 129(0.5 0.5	Clay loam Light clay	9 8.5	
129/1.0 1.0 1.8 6.9 26 Highly Sodic 129/1.5 1.5 2 7.4 27 Highly Sodic	Clay loam Light clay	9 8.5	
129/2.0 2.0 129/2.5 2.5 129/2.	Loam	10 10	
. .	Light clay Loam	8.5 10	
<u>131</u> <u>297098.5</u> <u>6237241.9</u> <u>104.7</u> <u>2.5</u> <u>131/0.5</u> <u>0.5</u>	Light clay	8.5	
132 297172.4 6237299.0 107.6 -1 132/0.5 0.5	Loam Loam	10 10	
133/1.0 1.0 2.5 10 25 Highly Sodic 133/1.5 1.5 2.7 11 25 Highly Sodic	Loam Light clay	10 8.5	
133/2.0 2.0 0	Light clay Light clay	8.5 8.5	
Image: Contract of the second secon	Light clay Light clay Light clay	8.5 8.5	
135 <u>297196.3</u> <u>6237203.8</u> 105.7 <u>2.5</u> 135/0.5 <u>0.5</u>	Clay loam	9	
136 297169.5 6237131.0 107.8 -0.5 136/0.5 0.5 <td>Loam Clay loam</td> <td>10 9</td>	Loam Clay loam	10 9	
136/1.5 1.5 1.3 4.9 27 Highly Sodic 136/2.0 2.0 </td <td>Light clay Light clay</td> <td>8.5 8.5</td>	Light clay Light clay	8.5 8.5	
	Light clay Light clay	8.5 8.5	
136/2.5 2.5	Clay loam	9	
1367_25 2.5 0 0 0 0 137 297245.7 6237175.7 102.2 1.5 137/0.5 0.5 0 0 0 0		8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light medium clay Light clay	8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light medium clay Light clay Light clay Light clay Light clay	8.5 8.5 8.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Light medium clay Light clay Light clay	8.5 8.5	

		Summary
EC _e	Sample Salinity Class	
[M x EC _{1:5}]	(Based on sample ECe)	
(deciS/m)	[Richards 1954]	
· · · ·		
4.9	Moderately Saline	Aggre
5.3 3.7	Moderately Saline Slightly Saline	Ve
3.0	Slightly Saline	N
3.1	Slightly Saline	
2.9	Slightly Saline	Non-
3.2	Slightly Saline	
3.0	Slightly Saline	
4.2	Moderately Saline	Soc
3.1	Slightly Saline	Hig
6.2	Moderately Saline	
3.7	Slightly Saline	N
3.2	Slightly Saline	
3.1 3.3	Slightly Saline Slightly Saline	Dispe
3.5	Slightly Saline	C
2.9	Slightly Saline	
1.0	Non-Saline	Di
5.5	Moderately Saline	
5.5	Moderately Saline	
5.3	Moderately Saline	
6.3	Moderately Saline	Sal
5.0	Moderately Saline	Hig
4.4	Moderately Saline	Ve
4.9 5.6	Moderately Saline Moderately Saline	Mode Slig
3.8	Slightly Saline	No
5.4	Moderately Saline	
4.1	Moderately Saline	
6.0	Moderately Saline	
6.1	Moderately Saline	
6.8	Moderately Saline	
5.8	Moderately Saline	
5.3	Moderately Saline	
6.6 3.4	Moderately Saline	
4.3	Slightly Saline Moderately Saline	
4.3	Moderately Saline	
5.6	Moderately Saline	
5.0	Moderately Saline	
5.2	Moderately Saline	
5.3	Moderately Saline	
2.1	Slightly Saline	
1.4	Non-Saline	
6.7	Moderately Saline	

Aggressivity Flags
Very Severe
Severe
Moderate
Mild
Non-Aggressive
Sodicity Flags
Highly Sodic
Sodic

Non-Sodic persion Flags

Complete
Some
Dispersive
No

alinity Flags

righty Game	
Very Saline	
Moderately Saline	
Slightly Saline	
Non-Saline	

-	EC _{1:5}	EC _e	Sample Salinity Class
	[Lab.]	[M x EC _{1:5}]	(Based on sample ECe)
-	(microS/cm)	(deciS/m)	[Richards 1954]
	350	4.9	Moderately Saline
	530 570	5.3	Moderately Saline
	350	3.0	Slightly Saline Slightly Saline
	360	3.1	Slightly Saline
	340	2.9	Slightly Saline
_	320	3.2	Slightly Saline
	370	3.0	Slightly Saline
	420	4.2	Moderately Saline
	410	3.1	Slightly Saline
	440 430	6.2 3.7	Moderately Saline
	380	3.2	Slightly Saline Slightly Saline
	360	3.1	Slightly Saline
	390	3.3	Slightly Saline
_	410	3.5	Slightly Saline
	340	2.9	Slightly Saline
	120	1.0	Non-Saline
	550	5.5	Moderately Saline
	650 620	5.5	Moderately Saline Moderately Saline
	740	6.3	Moderately Saline
	590	5.0	Moderately Saline
	520	4.4	Moderately Saline
	580	4.9	Moderately Saline
	660	5.6	Moderately Saline
	450 540	3.8 5.4	Slightly Saline
	460	4.1	Moderately Saline Moderately Saline Moderately Saline
	600 610	6.0 6.1	Moderately Saline
	680	6.8	Moderately Saline
	580	5.8	Moderately Saline
_	620	5.3	Moderately Saline
	780	6.6	Moderately Saline
	380 480	3.4	Slightly Saline Moderately Saline
	550	4.7	Moderately Saline
	560	5.6	Moderately Saline
	550	5.0	Moderately Saline
	580	5.2	Moderately Saline
	590	5.3	Moderately Saline
	260	2.1	Slightly Saline
	170	1.4	Non-Saline
	740	6.7	Moderately Saline
	440	4.0	Slightly Saline
	240	2.0	Slightly Saline
	410	3.5	Slightly Saline
	760	6.5	Moderately Saline
	650 660	5.9 5.6	Moderately Saline Moderately Saline Moderately Saline
	670 860	6.7 8.6	Moderately Saline
	640	5.8	Very Saline Moderately Saline Moderately Saline
	660	5.9	Moderately Saline
	620	6.2	Moderately Saline
	290	2.6	Slightly Saline
	630	6.3	Moderately Saline
	460	4.6	Moderately Saline
	660	5.6	Moderately Saline
	590	4.1	Moderately Saline
	570	4.8	Moderately Saline
	510	4.3	Moderately Saline
	610	5.2	Moderately Saline
	260	2.3	Slightly Saline
	500	4.5	Moderately Saline
	620	6.2	Moderately Saline
	760	7.6	Moderately Saline
	800	8.0	Moderately Saline
	560	5.6	Moderately Saline
	710	7.1	Moderately Saline
	310	3.1	Slightly Saline
	170	1.5	Non-Saline
	400	3.6	Slightly Saline
	420	3.8	Slightly Saline
	290	2.5	Slightly Saline
	370	3.1	Slightly Saline
	350	3.0	Slightly Saline
	550	5.5	Moderately Saline
	130	1.3	Non-Saline
	240	2.4	Slightly Saline
	220	2.2	Slightly Saline
	280	2.8	Slightly Saline
	390	3.9	Slightly Saline
	450	4.1	Moderately Saline
	220	1.9	Non-Saline
	570	5.1	Moderately Saline
	630	5.4	Moderately Saline
	570	5.7	Moderately Saline
	550	5.5	Moderately Saline Slightly Saline
	450 680	6.8	Moderately Saline
	84	0.7	Non-Saline
	470	4.7	Moderately Saline
	660	6.6	Moderately Saline
	650	6.5	Moderately Saline
	720	6.1	Moderately Saline
	680	5.8	Moderately Saline
+	670	5.7	Moderately Saline
	820	7.0	Moderately Saline
	220	1.9	Non-Saline
_	670	6.0	Moderately Saline
	740	7.4	Moderately Saline
4	710	6.4	Moderately Saline
	700	6.0	Moderately Saline
	620	5.3	Moderately Saline
	600	5.1	Moderately Saline
	720	6.1	Moderately Saline
-	540	4.9	Moderately Saline
	600	4.8	Moderately Saline
1	790	6.7	Moderately Saline
	670	5.7	Moderately Saline
1	650 890	5.5 7.6	Moderately Saline
	670	5.7	Moderately Saline
	150	1.3	Non-Saline

Appendix D

NATA Report and Chain Of Custody

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 5, 50 Topham Road Smeaton Grange NSW 2567 Phone (02) 4647 0075 Fax (02) 4646 1886

Determination of Emerson Class Number of Soil

Client: Project:	CORNISH GROUP Salinity Investigatio		Project No: Report No: Report Date:		2 279 14	
Location:	51 St Andrews Roa Leppington		Date of Test: Page:	16/06/2014 1 of 1		
Sample No.	Depth (m)	Description	Water Type	Water Temp	Class No.	
103	1.5	SILTY CLAT – Grey mottled red and orange silty clay	Distilled	21	6	
110	2.0	SILTY CLAY – Grey and orange silty clay	Distilled	21	6	
117	1.0	SILTY CLAY – Grey and orange silty clay	Distilled	21	6	
128	1.0	SILTY CLAY – Red mottled grey silty clay	Distilled	21	6	
138	0.5	SILTY CLAY – Orange and red mottled grey silty clay	Distilled	21	5	

Test Methods:AS 1289 3.8.1Sampling Methods:Sampled By DP Engineering

Remarks:

TA NATA Accredited Laboratory Number: 828

ACCREDITED FOR TECHNICAL ACCREDITED FOR TECHNICAL Accredited for compliance with ISO/IEC 17025 Tested: AS Checked: AJS A J Sweetland Laboratory Manager

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

110762

Client: Douglas Partners Pty Ltd Smeaton Grange Unit 5/50 Topham Rd Smeaton Grange

Attention: Brad Harris

NSW 2567

Sample log in details:

Your Reference:76571.02, 51 St Andrews Rd, LeppingtonNo. of samples:116 soilsDate samples received / completed instructions received30/05/14/30/05/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 6/06/14
 /
 6/06/14

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Jacinta/Hurst Laboratory Manager

Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-1	110762-2	110762-3	110762-4	110762-5
Your Reference		101	101	101	101	101
Depth		0.5	1.0	1.5	2.0	2.5
DateSampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.9	4.9	5.3	6.2	6.2
Electrical Conductivity 1:5 soil:water	μS/cm	350	530	570	350	360
Chloride, Cl 1:5 soil:water	mg/kg	410	640	690	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	21	53	63	[NA]	[NA]
Miscellaneous Inorg - soil		110700.0	110700 7	110700.0	110762-9	110700 40
Our Reference: Your Reference	UNITS	110762-6 101	110762-7 102	110762-8 103	110762-9	110762-10 103
Depth		3.0	0.5	0.5	1.0	1.5
Date Sampled		3.0 28/05/2014	28/05/2014	0.5 28/05/2014	28/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	7.0	5.1	4.7	4.7	4.7
Electrical Conductivity 1:5 soil:water	µS/cm	340	320	370	420	410
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	300	[NA]	[NA]	340
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	61	[NA]	[NA]	170
		Γ			Γ	
Miscellaneous Inorg - soil Our Reference:	UNITS	110762-11	110762-12	110762-13	110762-14	110762-15
Your Reference	UNITS	10762-11	10762-12	10762-13	10762-14	10762-15
Depth		2.0	2.5	3.0	3.5	4.0
Date Sampled		28/05/2014	2.5	28/05/2014	28/05/2014	4.0
Type of sample		soil	soil	soil	soil	soil
 Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	4.7	4.7	4.9	4.9	4.9
Electrical Conductivity 1:5 soil:water	μS/cm	4.7	430	380	360	4.9 390
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	340	310	280	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	210	210	180	[NA]
Sulphale, SO4 1.5 Soli.walei	mg/kg	נואאן	210	210	100	[INA]

Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-16	110762-17	110762-18	110762-19	110762-20
Your Reference		103	103	104	105	105
Depth		4.5	5.0	0.5	0.5	1.0
Date Sampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.8	5.0	5.5	4.8	4.7
Electrical Conductivity 1:5 soil:water	µS/cm	410	340	120	550	650

Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-21	110762-22	110762-23	110762-24	110762-25
Your Reference		105	105	105	105	105
Depth		1.5	2.0	2.5	3.0	3.5
Date Sampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.8	4.7	4.7	5.7	5.7
Electrical Conductivity 1:5 soil:water	µS/cm	620	740	590	520	580
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	660	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	190	[NA]	[NA]

Miscellaneous Inorg - soil							
Our Reference:	UNITS	110762-26	110762-27	110762-28	110762-29	110762-30	
Your Reference		105	105	106	107	107	
Depth		4.0	4.5	0.5	0.5	1.0	
Date Sampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	28/05/2014	
Type of sample		soil	soil	soil	soil	soil	
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014	
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014	
pH 1:5 soil:water	pHUnits	6.8	5.7	4.7	4.8	4.8	
Electrical Conductivity 1:5 soil:water	μS/cm	660	450	540	460	600	
Chloride, Cl 1:5 soil:water	mg/kg	740	460	570	360	[NA]	
Sulphate, SO4 1:5 soil:water	mg/kg	180	150	230	300	[NA]	

Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-31	110762-32	110762-33	110762-34	110762-35
Your Reference		107	107	107	107	108
Depth		1.5	2.0	2.5	3.0	0.5
Date Sampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	27/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.9	4.9	4.9	4.8	4.4
Electrical Conductivity 1:5 soil:water	μS/cm	610	680	580	620	780
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	940
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	170

					[[
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-36	110762-37	110762-38	110762-39	110762-40
Your Reference		109	110	110	110	110
Depth		0.5	0.5	1.0	1.5	2.0
Date Sampled Type of sample		27/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil
		5011	SOII	SUI	5011	5011
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.9	4.8	4.8	4.8	4.8
Electrical Conductivity 1:5 soil:water	µS/cm	380	480	550	560	550
Chloride, Cl 1:5 soil:water	mg/kg	280	[NA]	500	[NA]	570
Sulphate, SO4 1:5 soil:water	mg/kg	280	[NA]	270	[NA]	260
	mg/ng	200	[10,1]	2.0	[]	200
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-41	110762-42	110762-43	110762-44	110762-45
Your Reference		110	110	111	112	113
Depth		2.5	3.0	0.5	0.5	0.5
Date Sampled		26/05/2014	26/05/2014	26/05/2014	27/05/2014	27/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	_	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
•						
pH 1:5 soil:water	pHUnits	4.9	5.0	5.1	5.2	4.8
Electrical Conductivity 1:5 soil:water	µS/cm	580	590	260	170	740
Chloride, Cl 1:5 soil:water	mg/kg	570	[NA]	200	100	790
Sulphate, SO4 1:5 soil:water	mg/kg	280	[NA]	130	91	320
					[
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-46	110762-47	110762-48	110762-49	110762-50
Your Reference		114 0.5	115 0.5	116 0.5	117 0.5	117 1.0
Depth Date Sampled		26/05/2014	0.5 28/05/2014	0.5 27/05/2014	0.5 27/05/2014	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	5.4	5.0	4.7	4.7	4.9
Electrical Conductivity 1:5 soil:water	µS/cm	440	240	410	760	650
Chloride, Cl 1:5 soil:water	mg/kg	470	180	400	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	150	120	170	[NA]	[NA]
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-51	110762-52	110762-53	110762-54	110762-55
Your Reference		117	117	117	117	118
Depth		1.5	2.0	2.5	3.0	0.5
Date Sampled		27/05/2014	27/05/2014	27/05/2014	27/05/2014	26/05/2014
		soil	soil	soil	soil	soil
Type of sample			00/00/0044	03/06/2014	03/06/2014	03/06/2014
Date prepared	-	03/06/2014	03/06/2014	03/00/2014	00/00/2014	
	-	03/06/2014 04/06/2014	03/06/2014 04/06/2014	03/06/2014	04/06/2014	04/06/2014
Date prepared Date analysed	- - pHUnits			04/06/2014		04/06/2014 4.7
Date prepared Date analysed pH 1:5 soil:water		04/06/2014 4.9	04/06/2014 5.2	04/06/2014 5.3	04/06/2014 5.6	4.7
Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water	μS/cm	04/06/2014 4.9 660	04/06/2014 5.2 670	04/06/2014 5.3 860	04/06/2014 5.6 640	4.7 660
Date prepared Date analysed pH 1:5 soil:water		04/06/2014 4.9	04/06/2014 5.2	04/06/2014 5.3	04/06/2014 5.6	4.7

Missellenseus Inerg. soil						
Miscellaneous Inorg - soil		440700 50	440700 57	110700 50	110700 50	440700.00
Our Reference:	UNITS	110762-56	110762-57	110762-58	110762-59	110762-60
Your Reference		119	120	121	122	122
Depth		0.5	0.5	0.5	0.5	1.0
Date Sampled Type of sample		28/05/2014 soil	26/05/2014 soil	26/05/2014 soil	28/05/2014 soil	28/05/2014 soil
		SOII	5011	SUI	SUI	5011
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.6	4.8	4.7	4.8	5.0
Electrical Conductivity 1:5 soil:water	µS/cm	620	290	630	460	660
Chloride, Cl 1:5 soil:water	mg/kg	590	330	600	[NA]	740
Sulphate, SO4 1:5 soil:water	mg/kg	300	40	370	[NA]	210
					[]	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-61	110762-62	110762-63	110762-64	110762-65
Your Reference		122	122	122	122	123
Depth		1.5	2.0	2.5	3.0	0.5
Date Sampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	26/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	5.5	5.6	5.9	6.3	5.0
·						
Electrical Conductivity 1:5 soil:water	µS/cm	590	570	510	610	260
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	600	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	190	[NA]	[NA]	[NA]
		1				
Miscellaneous Inorg - soil		440700.00	440700.07	110700.00	110700.00	440700 70
Our Reference:	UNITS	110762-66	110762-67	110762-68	110762-69	110762-70
Your Reference		124	124	124	124	124
Depth		0.5	1.0	1.5	2.0 27/05/2014	2.5
Date Sampled Type of sample		27/05/2014 soil	27/05/2014 soil	27/05/2014 soil	27/05/2014 soil	27/05/2014 soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	4.6	4.6	4.6	4.7	4.8
Electrical Conductivity 1:5 soil:water	µS/cm	500	620	760	800	560
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	1,000	640
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	260	180
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-71	110762-72	110762-73	110762-74	110762-75
Your Reference		124	125	126	126	126
Depth		3.0	0.5	0.5	1.0	1.5
Date Sampled		27/05/2014	27/05/2014	26/05/2014	26/05/2014	26/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	4.8	5.5	5.2	4.9	4.9
Electrical Conductivity 1:5 soil:water	μS/cm	710	310	170	400	420

Miscellaneous Inorg - soil		440700 70	440700 77	110700 70	110700 70	440700.00
Our Reference:	UNITS	110762-76	110762-77	110762-78	110762-79	110762-80
Your Reference		126	126	126	127	128
Depth		2.0	2.5	3.0	0.5	0.5
Date Sampled Type of sample		26/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	5.2	5.1	5.3	4.8	5.8
Electrical Conductivity 1:5 soil:water	µS/cm	290	370	350	550	130
Chloride, Cl 1:5 soil:water	mg/kg	220	340	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	110	150	[NA]	[NA]	[NA]
Miscellaneous Inorg - soil Our Reference:	UNITS	110762-81	110762-82	110762-83	110762-84	110762-85
Our Reference: Your Reference		110762-81	110762-82	110762-83	110762-84	110762-85
Depth		120	120	2.0	2.5	3.0
Date Sampled		26/05/2014	26/05/2014	2.0 26/05/2014	2.5 26/05/2014	3.0 26/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	_	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	5.0	5.0	5.1	4.9	5.1
·				-	-	-
Electrical Conductivity 1:5 soil:water	µS/cm	240	220	280	390	450
Chloride, Cl 1:5 soil:water	mg/kg	110	[NA]	200	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	220	[NA]	180	[NA]	[NA]
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-86	110762-87	110762-88	110762-89	110762-90
Your Reference		129	129	129	129	129
Depth		0.5	1.0	1.5	2.0	2.5
DateSampled		27/05/2014	27/05/2014	27/05/2014	27/05/2014	27/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed						
2	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	- pHUnits					
pH 1:5 soil:water	- pHUnits uS/cm	5.8	5.4	5.4	5.5	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	5.8 220	5.4 570	5.4 630	5.5 570	5.5 550
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water	μS/cm mg/kg	5.8 220 [NA]	5.4 570 500	5.4 630 520	5.5 570 390	550 [NA]
Electrical Conductivity 1:5 soil:water	μS/cm	5.8 220	5.4 570	5.4 630	5.5 570	5.5 550
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water	μS/cm mg/kg	5.8 220 [NA]	5.4 570 500	5.4 630 520	5.5 570 390	5.5 550 [NA]
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water	μS/cm mg/kg	5.8 220 [NA]	5.4 570 500	5.4 630 520	5.5 570 390	5.5 550 [NA] [NA]
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129	5.4 570 500 390 110762-92 130	5.4 630 520 480 110762-93 131	5.5 570 390 370 110762-94 132	5.5 550 [NA] [NA] 110762-95 133
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0	5.4 570 500 390 110762-92 130 0.5	5.4 630 520 480 110762-93 131 0.5	5.5 570 390 370 110762-94 132 0.5	5.5 550 [NA] [NA] 110762-95 133 0.5
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014	5.4 570 500 390 110762-92 130 0.5 26/05/2014	5.4 630 520 480 110762-93 131 0.5 26/05/2014	5.5 570 390 370 110762-94 132 0.5 27/05/2014	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0	5.4 570 500 390 110762-92 130 0.5	5.4 630 520 480 110762-93 131 0.5	5.5 570 390 370 110762-94 132 0.5	5.5 550 [NA] [NA] 110762-95 133 0.5
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014	5.4 570 500 390 110762-92 130 0.5 26/05/2014	5.4 630 520 480 110762-93 131 0.5 26/05/2014	5.5 570 390 370 110762-94 132 0.5 27/05/2014	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014 soil	5.4 570 500 390 110762-92 130 0.5 26/05/2014 soil	5.4 630 520 480 110762-93 131 0.5 26/05/2014 soil	5.5 570 390 370 110762-94 132 0.5 27/05/2014 soil	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014 soil
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared	µS/cm mg/kg mg/kg	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014 soil 03/06/2014	5.4 570 500 390 110762-92 130 0.5 26/05/2014 soil 03/06/2014	5.4 630 520 480 110762-93 131 0.5 26/05/2014 soil 03/06/2014	5.5 570 390 370 110762-94 132 0.5 27/05/2014 soil 03/06/2014	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014 soil 03/06/2014
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	μS/cm mg/kg mg/kg UNITS 	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014 soil 03/06/2014 04/06/2014	5.4 570 500 390 110762-92 130 0.5 26/05/2014 soil 03/06/2014 04/06/2014	5.4 630 520 480 110762-93 131 0.5 26/05/2014 soil 03/06/2014	5.5 570 390 370 110762-94 132 0.5 27/05/2014 soil 03/06/2014 04/06/2014	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014 soil 03/06/2014 04/06/2014
Electrical Conductivity 1:5 soil:water Chloride, Cl 1:5 soil:water Sulphate, SO4 1:5 soil:water Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water	µS/cm mg/kg mg/kg UNITS 	5.8 220 [NA] [NA] 110762-91 129 3.0 27/05/2014 soil 03/06/2014 04/06/2014 5.7	5.4 570 500 390 110762-92 130 0.5 26/05/2014 soil 03/06/2014 04/06/2014 4.9	5.4 630 520 480 110762-93 131 0.5 26/05/2014 soil 03/06/2014 04/06/2014 5.5	5.5 570 390 370 110762-94 132 0.5 27/05/2014 soil 03/06/2014 04/06/2014 4.8	5.5 550 [NA] [NA] 110762-95 133 0.5 26/05/2014 soil 03/06/2014 04/06/2014 4.8

Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-96	110762-97	110762-98	110762-99	110762-100
Your Reference		133	133	133	133	133
Depth Date Sampled		1.0 26/05/2014	1.5 26/05/2014	2.0 26/05/2014	2.5 26/05/2014	3.0 26/05/2014
Type of sample		26/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil	26/05/2014 soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	4.9	5.6	5.0	5.3	5.3
Electrical Conductivity 1:5 soil:water	μS/cm	650	720	680	670	820
Chloride, Cl 1:5 soil:water	mg/kg	730	820	[NA]	[NA]	980
Sulphate, SO4 1:5 soil:water	mg/kg	190	250	[NA]	[NA]	260
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-101	110762-102	110762-103	110762-104	110762-105
Your Reference		134	135	136	136	136
Depth		0.5	0.5	0.5	1.0	1.5
Date Sampled		26/05/2014	27/05/2014	26/05/2014	26/05/2014	26/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	5.2	6.8	4.8	5.0	5.3
Electrical Conductivity 1:5 soil:water	µS/cm	220	670	740	710	700
Chloride, Cl 1:5 soil:water	mg/kg	130	740	760	[NA]	780
Sulphate, SO4 1:5 soil:water	mg/kg	170	170	360	[NA]	320
					[]	020
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-106	110762-107	110762-108	110762-109	110762-110
Your Reference		136	136	136	137	138
Depth		2.0	2.5	3.0	0.5	0.5
Date Sampled		26/05/2014	26/05/2014	26/05/2014	26/05/2014	26/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pH Units	5.5	5.6	5.6	5.2	4.8
Electrical Conductivity 1:5 soil:water	μS/cm	620	600	720	540	600
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	670	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	59	[NA]
	mg/ng	[101]	[103]	[10,1]	00	[101]
Miscellaneous Inorg - soil						
Our Reference:	UNITS	110762-111	110762-112	110762-113	110762-114	110762-115
Your Reference		138	138	138	138	139
Depth		1.0	1.5	2.0	3.0	0.5
Date Sampled		26/05/2014	26/05/2014	26/05/2014	26/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	03/06/2014	03/06/2014	03/06/2014	03/06/2014	03/06/2014
Date analysed	-	04/06/2014	04/06/2014	04/06/2014	04/06/2014	04/06/2014
pH 1:5 soil:water	pHUnits	4.8	5.0	5.1	5.4	5.4
Electrical Conductivity 1:5 soil:water	µS/cm	790	670	650	670	150
Chloride, Cl 1:5 soil:water	mg/kg	880	680	[NA]	650	120
					000	
Sulphate, SO4 1:5 soil:water	mg/kg	450	400	[NA]	340	76

Miscellaneous Inorg - soil		
Our Reference:	UNITS	110762-116
Your Reference		138
Depth		2.5
Date Sampled		26/05/2014
Type of sample		soil
Date prepared	-	03/06/2014
Date analysed	-	04/06/2014
pH 1:5 soil:water	pH Units	5.1
Electrical Conductivity 1:5 soil:water	µS/cm	890

ESP/CEC						
Our Reference:	UNITS	110762-2	110762-3	110762-13	110762-14	110762-23
Your Reference		101	101	103	103	105
Depth		1.0	1.5	3.0	3.5	2.5
DateSampled		28/05/2014	28/05/2014	28/05/2014	28/05/2014	28/05/2014
Type of sample		soil	soil	soil	soil	soil
ExchangeableCa	meq/100g	0.1	<0.1	0.5	0.4	<0.1
ExchangeableK	meq/100g	0.2	0.3	0.4	0.4	0.2
ExchangeableMg	meq/100g	6.8	14	8.7	8.1	3.3
ExchangeableNa	meq/100g	1.3	3.3	2.7	2.4	1.5
Cation Exchange Capacity	meq/100g	8.4	18	12	11	5.0
ESP	%	16	19	22	21	30
	-					
ESP/CEC						
Our Reference:	UNITS	110762-26	110762-29	110762-30	110762-35	110762-36
Your Reference		105	107	107	108	109
Depth		4.0	0.5	1.0	0.5	0.5
Date Sampled Type of sample		28/05/2014 soil	28/05/2014 soil	28/05/2014 soil	27/05/2014 soil	27/05/2014 soil
		Soli				
ExchangeableCa	meq/100g	1	0.2	<0.1	0.8	0.5
ExchangeableK	meq/100g	0.3	0.2	0.2	0.1	0.2
ExchangeableMg	meq/100g	11	5.6	6.1	5.4	6.8
ExchangeableNa	meq/100g	3.9	1.6	2.0	1.7	1.5
Cation Exchange Capacity	meq/100g	16	7.5	8.4	8.0	9.0
ESP	%	24	21	24	21	17
				[[
ESP/CEC		440700 40	440700 54	110762-60	440700.00	110762-69
Our Reference: Your Reference	UNITS	110762-40 110	110762-51 117	122	110762-62 122	110762-69
Depth		2.0	1.5	1.0	2.0	2.0
DateSampled		26/05/2014	27/05/2014	28/05/2014	28/05/2014	27/05/2014
Type of sample		soil	soil	soil	soil	soil
ExchangeableCa	meq/100g	<0.1	<0.1	0.1	<0.1	<0.1
Exchangeable K	meq/100g	0.4	0.2	0.4	0.3	0.3
Exchangeable Mg	meq/100g	9.0	8.7	10	10	6.6
Exchangeable Na		3.5	3.0	3.9	4.8	3.2
•	meq/100g					
Cation Exchange Capacity	meq/100g	13	12	14	15	10
ESP	%	27	25	27	31	31
ESP/CEC						
Our Reference:	UNITS	110762-70	110762-76	110762-77	110762-81	110762-87
Your Reference		124	126	126	128	129
Depth		2.5	2.0	2.5	1.0	1.0
Date Sampled		27/05/2014	26/05/2014	26/05/2014	26/05/2014	27/05/2014
Type of sample		soil	soil	soil	soil	soil
Exchangeable Ca	meq/100g	<0.1	0.2	0.3	0.3	<0.1
ExchangeableK	meq/100g	0.2	0.2	0.3	0.2	<0.1
ExchangeableMg	meq/100g	5.4	5.5	5.9	5.6	4.9
ExchangeableNa	meq/100g	2.6	3.1	3.2	1.3	1.8
Cation Exchange Capacity	meq/100g	8.3	8.9	9.7	7.3	6.9
ESP	%	31	34	33	18	26
	,,,	Ŭ.	Ŭ.			

ESP/CEC						
Our Reference:	UNITS	110762-88	110762-96	110762-97	110762-105	110762-111
Your Reference		129	133	133	136	138
Depth		1.5	1.0	1.5	1.5	1.0
Date Sampled		27/05/2014	26/05/2014	26/05/2014	26/05/2014	26/05/2014
Type of sample		soil	soil	soil	soil	soil
ExchangeableCa	meq/100g	<0.1	<0.1	0.2	<0.1	<0.1
ExchangeableK	meq/100g	0.1	0.2	0.2	0.1	0.3
Exchangeable Mg	meq/100g	5.2	7.4	7.5	3.5	6.5
ExchangeableNa	meq/100g	2.0	2.5	2.7	1.3	2.1
Cation Exchange Capacity	meq/100g	7.4	10	11	4.9	8.9
ESP	%	28	24	25	27	24
ESP/CEC						

ESP/CEC		
Our Reference:	UNITS	110762-112
Your Reference		138
Depth		1.5
Date Sampled		26/05/2014
Type of sample		soil
ExchangeableCa	meq/100g	<0.1
0		-
ExchangeableK	meq/100g	0.4
Exchangeable Mg	meq/100g	9.9
ExchangeableNa	meq/100g	3.4
Cation Exchange Capacity	meq/100g	14
ESP	%	24

Client Reference: 76571.02, 51 St Andrews Rd, Leppington

MethodID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.

	-	Cli	ent Referenc	e: 76	571.02, 51 S	t Andrews Rd, Leppin	gton	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		
Date prepared	-			03/06/2 014	110762-1	03/06/2014 03/06/2014	LCS-1	03/06/2014
Date analysed	-			04/06/2 014	110762-1	04/06/2014 04/06/2014	LCS-1	04/06/2014
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	110762-1	4.9 4.9 RPD:0	LCS-1	101%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	110762-1	350 350 RPD:0	LCS-1	104%
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	110762-1	410 400 RPD:2	LCS-1	95%
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	110762-1	21 23 RPD: 9	LCS-1	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
ESP/CEC					SI#	Base II Duplicate II % RPD		Recovery
ExchangeableCa	meq/100 g	0.1	Metals-009	<0.1	110762-3	<0.1 0.1	LCS-1	104%
ExchangeableK	9 meq/100 g	0.1	Metals-009	<0.1	110762-3	0.3 0.3 RPD:0	LCS-1	113%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	110762-3	14 15 RPD:7	LCS-1	101%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	110762-3	3.3 3.5 RPD:6	LCS-1	100%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	110762-3	18 19 RPD:5	[NR]	[NR]
ESP	%	1	Metals-009	<1	110762-3	19 19 RPD:0	[NR]	[NR]
QUALITYCONTROL	UNITS	S	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
Miscellaneous Inorg - soil				Base+I	Duplicate+%RF	2D		
Date prepared	-		110762-11	03/06/2	014 03/06/201	4 LCS-2	03/06/201	4
Date analysed	-		110762-11	04/06/2	014 04/06/201	4 LCS-2	04/06/201	4
pH 1:5 soil:water	pHUn	its	110762-11	4.7	4.7 RPD:0	LCS-2	101%	
Electrical Conductivity 1:5 soil:water	μS/cr	m	110762-11	440	430 RPD:2	LCS-2	103%	
Chloride, Cl 1:5 soil:wate	r mg/k	g	[NT]		[NT]	LCS-2	98%	
Sulphate, SO4 1:5 soil:water	mg/k	g	[NT]		[NT]	LCS-2	109%	
QUALITY CONTROL ESP/CEC	UNITS	S	Dup.Sm#		Duplicate Duplicate+%RF	Spike Sm#	Spike % Reco	overy
					-			
ExchangeableCa	meq/10 g	00	110762-36	0.5	0.5 RPD:0	LCS-2	102%	
ExchangeableK	meq/10 g	00	110762-36	0.2	0.2 RPD:0	LCS-2	112%	
ExchangeableMg	meq/10 g	00	110762-36	6.8	7.5 RPD:10	LCS-2	98%	
ExchangeableNa	meq/10	00	110762-36	1.5	1.6 RPD:6	LCS-2	98%	
	_	00	110762-36	9.0 9.9 RPD:10		[NR]	[NR]	
Cation Exchange Capacity	g							

		Client Referenc	e: 76571.02, 51 St Ar	drews Rd, Leppi	ngton
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	110762-21	03/06/2014 03/06/2014	LCS-3	03/06/2014
Date analysed	-	110762-21	04/06/2014 04/06/2014	LCS-3	04/06/2014
pH 1:5 soil:water	pHUnits	110762-21	4.8 4.7 RPD:2	LCS-3	101%
Electrical Conductivity 1:5 soil:water	µS/cm	110762-21	620 650 RPD:5	LCS-3	105%
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	LCS-3	98%
Sulphate, SO41:5 soil:water	mg/kg	[NT]	[NT]	LCS-3	106%
QUALITY CONTROL ESP/CEC	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD		
Exchangeable Ca	meq/100 g	110762-96	<0.1 <0.1		
ExchangeableK	meq/100 g	110762-96	0.2 0.2 RPD:0		
ExchangeableMg	meq/100 g	110762-96	7.4 8.4 RPD:13		
ExchangeableNa	meq/100 g	110762-96	2.5 2.7 RPD:8		
Cation Exchange Capacity	meq/100 g	110762-96	10 11 RPD:10		
ESP	%	110762-96	24 24 RPD:0		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	110762-31	03/06/2014 03/06/2014	LCS-4	03/06/2014
Date analysed	-	110762-31	04/06/2014 04/06/2014	LCS-4	04/06/2014
pH 1:5 soil:water	pH Units	110762-31	4.9 4.8 RPD:2	LCS-4	101%
Electrical Conductivity 1:5 soil:water	µS/cm	110762-31	610 620 RPD:2	LCS-4	105%
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	LCS-4	93%
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	LCS-4	101%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
 Date prepared	-	110762-41	03/06/2014 03/06/2014	LCS-5	03/06/2014
Date analysed	-	110762-41	04/06/2014 04/06/2014	LCS-5	04/06/2014
pH 1:5 soil:water	pHUnits	110762-41	4.9 4.9 RPD:0	LCS-5	101%
Electrical Conductivity 1:5 soil:water	μS/cm	110762-41	580 630 RPD:8	LCS-5	103%
Chloride, Cl 1:5 soil:water	mg/kg	110762-41	570 660 RPD:15	LCS-5	94%
Sulphate, SO41:5 soil:water	mg/kg	110762-41	280 310 RPD:10	LCS-5	101%

Client	Reference:
Olicili	Nelelence.

		Client Reference	e: 76571.02, 51 St An	drews Rd, Leppi	ngton
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + % RPD		
Date prepared	-	110762-51	03/06/2014 03/06/2014	LCS-6	03/06/2014
Date analysed	-	110762-51	04/06/2014 04/06/2014	LCS-6	04/06/2014
pH 1:5 soil:water	pHUnits	110762-51	4.9 4.9 RPD:0	LCS-6	101%
Electrical Conductivity 1:5 soil:water	µS/cm	110762-51	660 720 RPD:9	LCS-6	102%
Chloride, Cl 1:5 soil:water	mg/kg	110762-51	730 800 RPD:9	[NR]	[NR]
Sulphate, SO41:5 soil:water	mg/kg	110762-51	180 190 RPD:5	[NR]	[NR]
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	110762-61	03/06/2014 03/06/2014	110762-2	04/06/2014
Date analysed	-	110762-61	04/06/2014 04/06/2014	110762-2	04/06/2014
pH 1:5 soil:water	pHUnits	110762-61	5.5 5.5 RPD:0	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	110762-61	590 560 RPD:5	[NR]	[NR]
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	110762-2	102%
Sulphate, SO41:5 soil:water	mg/kg	[NT]	[NT]	110762-2	113%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	110762-71	03/06/2014 03/06/2014	110762-46	04/06/2014
Date analysed	-	110762-71	04/06/2014 04/06/2014	110762-46	04/06/2014
pH 1:5 soil:water	pHUnits	110762-71	4.8 4.9 RPD:2	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	110762-71	710 660 RPD:7	[NR]	[NR]
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	110762-46	#
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	110762-46	130%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	110762-81	03/06/2014 03/06/2014	110762-94	04/06/2014
Date analysed	-	110762-81	04/06/2014 04/06/2014	110762-94	04/06/2014
pH 1:5 soil:water	pHUnits	110762-81	5.0 5.1 RPD:2	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	μS/cm	110762-81	240 230 RPD:4	[NR]	[NR]
Chloride, Cl 1:5 soil:water	mg/kg	110762-81	110 96 RPD:14	110762-94	90%
Sulphate, SO41:5 soil:water	mg/kg	110762-81	220 190 RPD:15	110762-94	#

Client	Reference:
Olicili	Nelelence.

QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	110762-91	03/06/2014 03/06/2014
Date analysed	-	110762-91	04/06/2014 04/06/2014
pH 1:5 soil:water	pH Units	110762-91	5.7 5.6 RPD:2
Electrical Conductivity 1:5 soil:water	µS/cm	110762-91	450 480 RPD:6
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	110762-101	03/06/2014 03/06/2014
Date analysed	-	110762-101	04/06/2014 04/06/2014
pH 1:5 soil:water	pH Units	110762-101	5.2 5.2 RPD:0
Electrical Conductivity 1:5 soil:water	µS/cm	110762-101	220 210 RPD:5
Chloride, Cl 1:5 soil:water	mg/kg	110762-101	130 120 RPD:8
Sulphate, SO41:5 soil:water	mg/kg	110762-101	170 160 RPD: 6
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	110762-111	03/06/2014 03/06/2014
Date analysed	-	110762-111	04/06/2014 04/06/2014
pH 1:5 soil:water	pH Units	110762-111	4.8 4.7 RPD:2
Electrical Conductivity 1:5 soil:water	µS/cm	110762-111	790 830 RPD:5
Chloride, Cl 1:5 soil:water	mg/kg	110762-111	880 920 RPD:4
Sulphate, SO41:5 soil:water	mg/kg	110762-111	450 460 RPD:2

Report Comments:

Cl# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS. SO4# Percent recovery not available due to matrix interference, however an acceptable recovery was achieved for the LCS.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Project Name:		t Andrews Road. Leppington -	load. Lenn	51 St Andrews Road. Lennington - SMD							
Project No:	765	76571.02			Campler				To:	Envirolab Services	ces (ces
Project Mgr:	CCK				adilible		BAH			12 Ashlev Street	t Chatewood NSW 2067
Email:	Brac	llev.Harris	Pidorialaci	Bradley Harris@doi.idlaspartnom 2000 000	Mob. Phone:	none:	0412 75	754 162	Attn:	Tania Notaras	
Date Required:		dard	000000000000000000000000000000000000000	Par 11 101 9.00	11.au				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
		əte	Sample	ŏ					Email:	tnotaras@envirc	tnotaras@envirolabservices.com.au
Clames	1	вQ	Iype	Type				Ans	Analytes		
Q	Ω	gnilqms2	S - soil W - water	G - glass P - plastic	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
101/0.5	-	28.05.14	S	Ľ	,						
101/1.0	2	28.05.14	v.		< :	×	×				
101/1.5	3	28 05 14	o u		×	×	×	×			
101/2.0	4	28.05.14	0	ס פ	×	×	×	×			
101/2.5	S	28 05 14	o u	5 c	×	×					
101/3.0	9	28.05.14	0	0 0	×	×					
102/0 5	4	20.00.14	0	0	×	×				EIMROURE	Envirolab Services
1 0/001	- 0	28.05.14	s	U	×	×	×			ſ	Philippine Street St Philippine State State
C.U/SUI	0 0	28.05.14	s	IJ	×	×				OIL :0N GO	162
103/1.0	τ	28.05.14	S	IJ	×	×					+ 500
103/1.5	0	28.05.14	S	G	×	×	>			Received by:	Stit
103/2.0	11	28.05.14	s	U	,	; ,	<	+		Temp: Cool/Ar foient	
103/2.5	12	28.05.14	S	Ľ	< >	< ;				S minter fiac Broke	< centNope
103/3.0	3	28.05.14	S	0 0	< >	× ;	×			2	
Lab Report No:				, , 	<	×	×	×			
Send Results to:		Douglas Partners Ptv Ltd	ners Ptv Lt	t	Address Init 6 50	EO Tork	4				
Relinquished by:		BAH			0 1110 00	udo i no	am Koad,	I Upriam Koad, Smeaton Grange	2567	Phone: (02) 4647 0075	75 Eav: (03) 1640 1000
							+	STATE OF THE REAL	-		.VD

Page 1 of 9

Project Name:		me: 51 St Andrews Road, Leppington - SMP	oad, Leppi	-eppinaton - SMP							
Project No:	765	76571.02			Campler				To:	Envirolab Services	
Project Mar:	CCK						BAH			12 Ashley Street, Ch	Chatswood NSW 2067
Email:	Brac	Hev Harris	activity of	and the second second	Mob. Phone:	none:	041275	754 162	Attn:		
Date Required:	122	Standard	*anadias	nai il iel s.co	m.au				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
									Email:	tnotaras@envirolabservices.com.au	ervices.com.au
		Date	Sample Type	Container Type				An	Analytes		
Sample	D D	l gnilqms2	S - soil W - water	G - glass P - plastic	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
103/3.5	4	28.05.14	S	Ľ	>	>					
103/4.0	15	28.05.14	S	0 (1	< >	× ;	×	×			
103./4.5	16	28.05.14	S	0 0	< ×	< >					
103/5.0	4-	28.05.14	S	U	×	× ×					
104/0.5	81	28.05.14	S	U	×	*					
105/0.5	61	28.05.14	s	U	×	* *					
105/1.0	20	28.05.14	s	U	×	< >					
105/1.5	17	28.05.14	s	9	× ×	< ×					
105/2.0	22	28.05.14	s	U	×	×					
105/2.5	23	28.05.14	s	U	*	,	,				
105/3.0	55	28.05.14	S	C	< >	< >	×	×			
105/3.5	35	28.05.14	s		< >	< >					
105/4.0	26	28.05.14	S	0 (1)	< >	× >					
Lab Report No:)	<	×	×	×			
Send Results to:		Douglas Partners Ptv Ltd	ners Ptv Lto	T	se I Init 5	EO Tool					
Relinquished by:		BAH		1		ido i op '		2567	d, Smeaton Grange 2567 Pho	Phone: (02) 4647 0075	Fax: (02) 4646 1886
Signed:											

Page 2 of 9

	51 St	ect Name: 51 St Andrews Road, Lennington - S	oad. Lenni	51 St Andrews Road, Leppington - SMD							
Project No:	76571.02	1.02	dda- inn		Comel				To:	Envirolab Services	
Project Mar:	CCK				Sampler.		BAH			12 Ashlev Street. Cha	Chatswood NSM 2067
Email:	Brad	PV Harrie	and an along		Mob. Phone:	hone:	0412 75	754 162	Attn:		
Date Required:		lard	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Standard	n.au				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
									Email:	tnotaras@envirolabservices.com.au	ervices.com.au
		Date	Sample Type	Container Type				An	Analytes		
Sample ID	Lab	gnilqms2	S - soil W - water	G - glass P - plastic	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
105/4.5	ta	28.05.14	S	Ċ	,	3	:				
106/0.5	28	28.05.14	S	0 (1)	< >	× >	×				
107/0.5	29	26.05.14	S	0	< >	< >	× ;				
107/1.0	30	26.05.14	S	0	< ×	< >	×	×			
107/1.5	31	26.05.14	S	0	< ×	< >		×			
107/2.0	32	26.05.14	S	0	*	< >					
107/2.5	33	26.05.14	s	υ	* *	< >		+			
107/3.0	\$	26.05.14	s	υ	< ×	< ×					
108/0.5	R	27.05.14	s	U	×	× ×	>	,			
109/0.5	36	27.05.14	S	U	* *	< >	< :	×			
110/0.5	37	26.05.14	s	0	< ×	< >	×	×			
110/1.0	38	26.05.14	s	0	* *	< >	,				
110/1.5	39	26.05.14	S	C		< >	~				
Lab Report No:				-)-	<	×					
Send Results to:		Douglas Partners Ptv Ltd	hers Ptv Ltc		Address I Init 5	EO Tool					
Relinquished by:	1	BAH		1	0 1110 000	Ido I no '		, Smeaton G	Smeaton Grange 2567 Pr	Phone: (02) 4647 0075	Fax: (02) 4646 1886
Signed:			ľ					ransported	Transported to lahoratory by:		1

Page 3 of 9

Project Name:		ct Name: 51 St Andrews Road, Leppington - S	ndrews Road, Leppington - S	51 St Andrews Road, Leppington - SMP					•		
Project No:	76571.02	1.02			Sampler		RAH		:0	AN	
Project Mgr:	CCK				Moh Phone	.ouor		764 460		et,	Chatswood NSW 2067
Email:	Brad	ley.Harris@	Ddouglasr	Bradley.Harris@douglaspartners.com au	n all	-2101	041212	701 4	Attn:	Tania Notaras	
Date Required:		dard	an Brand		1.44				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
			Sample	Container					Email:	thotaras@envirolabservices.com.au	ervices.com.au
		Date	Type	Type				Ané	Analytes		
oampie	Lab ID	pnilqme2	S - soil W - water	G - glass	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
110/2.0	40	26.05.14	S	Ľ	>	,					
110/2.5	41	26.05.14	S) U	< >	< >	× ;	×			
110/3.0	42	26.05.14	S	0	< ×	< >	×				
111/0.5	43	26.05.14	S	U	×	< ×	>				
112/0.5	4	27.05.14	S	U	×	×	< >				
113/0.5	45	27.05.14	S	IJ	×	×	< >	-			
114/0.5	46	26.05.14	s	U	× ×	< ×	< >	-			
115/0.5	44	28.05.14	s	U	× ×	< ×	< >				
116/0.5	48	27.05.14	s	U	×	×	< >				
117/0.5	49	27.05.14	s	U	×		<				
117/1.0	50	27.05.14	S	υ	×	< ×					
117/1.5	51	27.05.14	S	U	×		,	,			
117/2.0	52	27.05.14	S	C	. >	< >	<	×			
Lab Report No:)	<	×		-			
Send Results to:		Douglas Partners Ptv Ltd	hers Ptv Lto	T	Address I Init 5		Terd wor				
Relinquished by:		BAH						, Smeaton Grange 2567		Phone: (02) 4647 0075	Fax: (02) 4646 1886
Cinnod.											

Form COC

Page 4 of 9

76571/02 Sampler: BAH I.1 None Total Landa Endley/Harris@douglaspartners.com.au Mob. Phone: 0412 754 162 Attn:: Tanina Notares Endley/Harris@douglaspartners.com.au Mob. Phone: 0412 754 162 Attn:: Tanina Notares Standard Sample Type Type Type Type Fault 1D Register Sample Container Email: Inotares@envirolabservices.com 53 27.06.14 S G x x Analytes 54 27.06.14 S G x x Analytes 54 27.06.14 S G x x K Analytes 56 2805.14 S G x x K Analytes 57 2805.14 S G x X K Analytes 56 2805.14 S G x X K K 57 2805.14 S<	Project Name:		act Name: 51 St Andrews Road, Leppington - S	oad, Leppi	51 St Andrews Road, Leppington - SMP					To:	Envirolation Cardinal	
CCK Mon. Prov. CAN Tania Notares Tania Notares Tania Notares Biadley/Harris@douglaspartners.com au GOA Phone: 0.0.2 9010 cross Fax: Biadley/Harris@douglaspartners.com au Ippe Type Phone: 0.0.2 9010 cross Fax: Biadley/Harris@douglaspartners.com au Type Type Phone: 0.0.2 9010 cross Fax: Lab Reg Type Type Type Phone: 0.0.2 9010 cross Fax: S3 27.05.14 S G x x h Analytes 55 205.14 S G x x h h h 55 205.14 S G x x h h h 56 2805.14 S G x x h h h 57 2605.14 S G x x h h h h 57 2805.14 S G	Project No:	7657	1.02					DVD				
Bradley Harris@douglaspartners.com.au Interfley Harris@douglaspartners.com.au Interflex Tania Notares Standard Email: Tania Notares Email: Tania Notares Standard Email: Tope Type Phone: (02) 9910 6200 Fax: Standard Type Type Type Type Phone: (02) 9910 6200 Fax: Standard Sample Container Analytes Analytes Analytes Analytes 53 27.05.14 S G X X X Analytes 55 2805.14 S G X X X Analytes 56 2805.14 S G X X X Analytes 57 2605.14 S G X X X Analytes 56 2805.14 S G X X X Y 57 2605.14 S G X X X Y 57 2805.14 S G X X X X 58 2605.14 S G X X X X 57 2805.14 S G	Project Mgr:	CCK				Nob D		LING		,	et,	vood NSW 2067
Standard Phone: (02) 9910 6200 Fax: Lab Type Type Type Type Type D3 Type Type Type Type Notes 53 27.05.14 S G X X X Notes 53 27.05.14 S G X X X Notes 54 27.05.14 S G X X X Notes 55 26.05.14 S G X X X X X X 56 28.05.14 S G X X X X X X 57 26.05.14 S G X	Email:	Brac	llev Harris	Ndoundac	narthere con	1.00M	ione:	0412 1	162	Attn:	Tania Notaras	
Llab Container Email: Indares@envirolatiservices.com 1D Ref Type Type Type Noise 53 27.05.14 S G X X Noise 55 2805.14 S G X X Noise 55 2805.14 S G X X Noise 55 2805.14 S G X X Noise 56 2805.14 S G X X Noise 56 2805.14 S G X X Noise 57 2805.14 S G X X Noise 58 2805.14 S G X N	Date Required:		dard	and and and a		III.du				Phone:		Fax: (02) 9910 6201
$ \left[\begin{matrix} La \\ D \\ D \\ D \\ Samplin g \\ Sampl$		TF	0							Email:	tnotaras@envirolabservic	ces.com.au
Lab To Sampling Sampling No No 53 2705.14 S G y y Sampling No 54 2705.14 S G y y No No 55 2605.14 S G y y No No No 55 2605.14 S G y y No No No No 55 2605.14 S G y y No No </td <td></td> <td></td> <td>Date</td> <td>Sample Type</td> <td>Container Type</td> <td></td> <td></td> <td></td> <td>Ana</td> <td>ilytes</td> <td></td> <td></td>			Date	Sample Type	Container Type				Ana	ilytes		
53 27.05.14 S G x	Sample ID	D	gnilqms2			EC	Hq		Sodicity			Notes/preservation
54 27.05.14 S G ×	117/2.5	53	27.05.14	S	U	×	>					
65 26.05.14 S G ×	117/3.0	24	27.05.14	S	0 0	< ×	< >					
56 28.05.14 S G x	118/0.5	59	26.05.14	S	U	×	< ×	>				
67 26.05.14 S G ×	119/0.5	56	28.05.14	S	U	×	×	< ×				
58 26.05.14 S G x	120/0.5	25	26.05.14	s	U	×	×	× ×				
Sq 28.05.14 S G x x x x x x 60 28.05.14 S G x x x x x x 61 28.05.14 S G x x x x x x 62 28.05.14 S G x x x x x 63 28.05.14 S G x x x x 63 28.05.14 S G x x x 63 28.05.14 S G x x x 64 S G x x x x 63 28.05.14 S G x x 64 S G x x x 65 28.05.14 S G x x 65 28.05.14 S G x x 65 28.05.14 S G x x	121/0.5	28	26.05.14	S	U	×	×	< >				
60 28.05.14 S G ×	122/0.5	Sq	28.05.14	S	U	×	×	<				
61 28.05.14 S G x	122/1.0	60	28.05.14	S	U	×	×	×	×			
62 28.05.14 S G ×	122/1.5	19	28.05.14	S	G	×	×					
63 28.05.14 S G X X A 64 28.05.14 S G X X A 65 26.05.14 S G X X A 65 26.05.14 S G X X A A 65 26.05.14 S G X X A B	122/2.0	62	28.05.14	S	U	×	×	>	,			
64 28.05.14 S G x	122/2.5	63	28.05.14	s	IJ	×	×	¢	<			
65 26.05.14 S G x	122/3.0	64	28.05.14	s	IJ	×	×					
Douglas Partners Pty Ltd Address Unit 5, 50 Topham Road, Smeaton Grange 2567 Phone: (02) 4647 0075 Fax	123/0.5	65	26.05.14	s	0	×	* *					
Douglas Partners Pty Ltd Address Unit 5, 50 Topham Road, Smeaton Grange 2567 Phone: (02) 4647 0075 Fax-	ab Report No:						<					
	end Results to		Douglas Part	ners Pty Li		ess Unit 5	5, 50 Top	nam Roac	I. Smeaton Gr	ande 2567 ph	100/ 4647 0076	
Transnorted to Inhometer Line (10) and 10	Keilnquisned by:		3AH						+ hotononer		C/00 /+0+ /70/ .2010	Fax: (U2) 4646 1886

Page 5 of 9

Project No:	51 St Andrews Road Lennington SMD	ind l book	ennington SMD							
	76571 02	1000						To:	Envirolab Services	
	UCK			sampler:		BAH			12 Ashley Street. Chatswood NSW	tswood NSW 2067
	Sradley Horrio/	adamata a		Mob. Phone:	ione:	0412 754 162	54 162	Attn:	Tania Notaras	
equired.	<u>Prindry Inditis(wuougiaspartners.com.au</u> Standard	wuouglas	partners.cor	n.au				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
11	olal Iual u							Email:	tnotaras@envirolabservices com au	vices com au
		Sample Type	Container Type				An	Analytes		
Sample ID	년 년 Sampling I	S - soil W - Water	G - glastic P - plastic	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
124/0.5	66 27.05.14	S	Ċ	>	,					
124/1.0 S	G4 27.05.14	S	0 0	< ×	< >					
124/1.5 6	68 27.05.14	S	5	< >	< >					
124/2.0 6	69 27.05.14	S	0 0	< ×	< ×	*	>			
124/2.5 70	O 27.05.14	S	U	×	. >	< >	< ;			
124/3.0 71	27.05.14	S	U	×	< ×	<	×			
125/0.5	72 27.05.14	s	υ	× ×	< >					
126/0.5 7	73 26.05.14	s	U	× ×	< ×					
126/1.0 7	74 26.05.14	S	υ	×	* *					
126/1.5	7-5 26.05.14	S	9	*	< >					
126/2.0 7	76 26.05.14	s	υ	× ×	< ×	,	,			
126/2.5	77 26.05.14	s	0	×	< >	< >	< ;			
126/3.0 7	78 26.05.14	S	U	×	< >	<	×			
Lab Report No:			·	<	<					
Send Results to:	Douglas Partners Ptv Ltd	thers Ptv Lt		Address Unit 5		Pood mo				
Relinquished by:	BAH							1997	Phone: (02) 4647 0075	Fax: (02) 4646 1886
Signed:			Date & Time.	14		T T T T T T T T T T T T T T T T T T T	I ransported	I ransported to laboratory by:	<u>y:</u>	

Page 6 of 9

Project No: 76571.02 Project Mgr: CCK Email: Bradley.I Date Required: Standard Sample Lab ID ID ID ID	1.02	oad, Leppii	sct Name: 51 St Andrews Road, Leppington - SMP					To:	Envirolab Services	
: Mgr: equired:				Sampler:	Ľ	BAH			12 Ashlev Street Chat	Chatswood NSW 2067
D ple				Mob. Phone:	ione:	0412 754 162	54 162	Attn:		
	ley.Harris@	Qdouglasp	Bradley.Harris@douglaspartners.com.au	n.au				Phone:	(02) 9910 6200	Fav. (02) 0010 6201
	lard							Email:	thotaras@envirolabservices.com.au	
	9teC	Sample Type	Container Type				Ané	Analytes		
	l gnilqms2	S - soil W - water	G - glass P - plastic	EC	Hq	Sulphates Sulphates	Sodicity			Notes/preservation
127/0.5 74	26.05.14	S	U	×	×					
128/0.5 80	26.05.14	S	υ	×	×					
128/1.0 &1	26.05.14	S	υ	×	×	×	×			
128/1.5 82	26.05.14	s	IJ	×	×					
128/2.0 83	26.05.14	S	IJ	×	×	×				
128/2.5 84	26.05.14	S	U	×	×					
128/3.0 85	26.05.14	S	U	×	×					
129/0.5 ⁸⁶	27.05.14	S	U	×	×					
129/1.0 87	27.05.14	s	U	×	×	×	×			
129/1.5 88	27.05.14	s	U	×	×	×	×			
129/2.0 89	27.05.14	s	U	×	×	×				
129/2.5 9.0	27.05.14	S	ŋ	×	×					
129/3.0 q i	27.05.14	S	IJ	×	×					
	Douglas Partners Pty Ltd	tners Pty L		Address Unit 5,		ham Roa	50 Topham Road, Smeaton Grange 2567	-	Phone: (02) 4647 0075	Fax: (02) 4646 1886
C	DAH						Transported	Transported to laboratory by:	:	

Page 7 of 9

Project Name:	51 SI	ect Name: 51 St Andrews Road, Leppington - S	oad, Leppi	51 St Andrews Road, Leppington - SMP					To.	Cardinal Control	
Project No:	76571 02	1 02							:01	Envirolab Services	
Project Mar-	UCK.	70.1			Sampler:	er:	BAH			12 Ashley Street, Chatswood NSW 2067	atswood NSW 2067
Email.		Solution include		1000	Mob. Phone:	hone:	0412 754 162	54 162	Attn:	Tania Notaras	
Date Destrived.		iey.narris(c	vaouglas	Diauey. Harris(@douglaspartners.com.au	m.au				Phone:	(02) 9910 6200	Fax: (02) 9910 6201
Date required.	Standard	lard							Email:	tnotaras@envirolabservices.com.au	ervices.com.au
4		Date	Sample Type	Container Type				Ana	Analytes		
Sample ID	Lab ID	gnilqms2	S - soil W - Water	G - glass P - plastic	EC	Hq	Sulphates Sulphates	Sodicity			Notes/preservation
130/0.5	92	26.05.14	S	IJ	×	×	×				
131/0.5	93	26.05.14	s	U	×	×	×				
132/0.5	44	27.05.14	S	U	×	×	×				
133/0.5	56	26.05.14	S	U	×	×					
133/1.0	96	26.05.14	S	ი	×	×	×	×			
133/1.5	46	26.05.14	S	9	×	×	×	×			
133/2.0	86	26.05.14	S	U	×	×		:			
133/2.5	66	26.05.14	S	ი	×	×					
133/3.0	100	26.05.14	S	U	×	×	×				
134/0.5	Iol	26.05.14	S	IJ	×	×	×				
135/0.5	102	27.05.14	S	IJ	×	×	×				
136/0.5	103	26.05.14	S	U	×	×	×				
136/1.0	10	26.05.14	S	U	×	×					
Cand Boont No:			i							-	
Relinguished hy		Douglas Partners Pty Ltd RAH	thers Pty L	-	Address Unit 5,		ham Road	50 Topham Road, Smeaton Grange	2567	Phone: (02) 4647 0075	Fax: (02) 4646 1886
								Transnorted	Transnorted to labouter to		г

Page 8 of 9

Project Name:	51 SI	ect Name: 51 St Andrews Road. Leppington - S	oad. Leppi	51 St Andrews Road, Leppington - SMP					+		
Project No:	76571.02	1.02			Come				10:	Envirolab Services	Sõ
Project Mar-	CCK	12:			Sampler:		BAH			12 Ashley Street,	12 Ashley Street, Chatswood NSW 2067
Fmail.	Brad	Nov Loning	-1		Mob. Phone:	lone:	0412 754 162	162	Attn:	Tania Notaras	
Data Positizad		iey.narris(vaougias	Diauey.narris(@douglaspartners.com.au	n.au				Phone:		Fax: (02) 0010 6201
are veduien.	orandard	uard							Email:		18
		əteC	Sample Type	Container Type				An	Analytes		
Sample ID	Lab ID] pnilqms2	S - soil W - water	G - glassic P - plastic	EC	Hq	Chlorides Sulphates	Sodicity			Notes/preservation
136/1.5	105	26.05.14	S	U	×	×	>	>			
136/2.0	106	26.05.14	s	U	×	< ×	<	<			
136/2.5	107	26.05.14	S	U	×	< ×					
136/3.0	108	26.05.14	S	IJ	×	×					
137/0.5	601	26.05.14	S	U	×	×	×				
138/0.5	110	26.05.14	S	IJ	×	×					
138/1.0	111	26.05.14	S	IJ	×	×	*	>			
138/1.5	112	26.05.14	s	U	×	× ×	< ×	< >			
138/2.0	113	26.05.14	S	U	×	×	<	<			
138/3.0	114	26.05.14	S	U	×	×	*				
139/0.5	511	28.05.14	S	U	×	×	* *				
138/2.5	116	26.05.14	s	υ	×	×	<				
Sond Boonte to		-									
Relinquished by:		Douglas Partners Pty Ltd BAH	ners Pty Lt		Address Unit 5,	, 50 Topl	ham Road	I, Smeaton G	50 Topham Road, Smeaton Grange 2567 Pho	Phone: (02) 4647 0075	'5 Fax: (02) 4646 1886

Page 9 of 9